Журналы →  Tsvetnye Metally →  2016 →  №1 →  Назад

Название Research of the properties of an aluminium electrolytic cell anode cover materials
DOI 10.17580/tsm.2016.01.06
Автор Shakhray S. G., Polyakov P. V., Ivanova A. M., Shaydulin E. R.
Информация об авторе

Siberian Federal University, Krasnoyarsk, Russia:

S. G. Shakhray, Assistant Professor (Chair of Technosphere Safety of Mining and Metallurgical Production), e-mail: shahrai56@mail.ru
P. V. Polyakov, Professor-Consultant (Chair of Non-Ferrous Metals Metallurgy)


Scientific-Technical Center “Elter”, Krasnoyarsk, Russia:
A. M. Ivanova, Chief Executive Officer


LLC “RUSAL Engineering-Technical Center”, Krasnoyarsk, Russia:
E. R. Shaydulin, Manager


Anode cover is an important part of a dissipative system - a cell with prebaked anodes. Cover reduces the rate of anode oxidation by atmospheric air and stabilizes cell’s heat balance of bath, maintains the target level of the electrolyte, provides optimal ledge shape, adsorbs volatile fluorides, protects anode holder nipples from melt influence during an anode effect, extends the cell’s life, prevents excessive heat loss, reaching 153 kW, and electrical energy cost of its compensation. Hence, anode cover has a significant impact on the technical, economic and environmental performance of electrolysis. It reduces carbon materials, energy consumption and the pollutant emissions volume. The cover quality depends on raw materials characteristics, processing and mixing technologies, transportation and storage methods, algorithm of cover material loading into cell, and its operational properties, including chemical and granulometric composition, gas permeability, thermal conductivity, resistance to degradation, thickness of the layer. The research results of physical properties of aluminum cell cover material are presented in the paper. The particle size distribution and temperature impacts on the cover material properties are found. Research methods are presented. Cover materials compositions providing anode protection from oxidation, increasing or reduction of heat dissipation from anode massive that allows controlling anode-cathode distance and eliminating the cell’s MHD instability are offered. Recommendations for improving the covering material composition which provide its consumer properties increasing are developed.

Ключевые слова Aluminum electrolytic cell, the anode array, shelter, strength, oxidation, heat loss
Библиографический список

1. Bazhin V. Yu., Vlasov A. A., Sman A. V. Ukryvnoy material alyuminievykh elektrolizerov (Covering material of aluminium electrolyzers). Tekhnicheskie nauki: teoriya i praktika : materialy II Mezhdunarodnoy nauchnoy konferentsii (Technical sciences: theory and practice : materials of the II International scientific conference). Chita, 2014. pp. 33–34.
2. Sman A. V., Bazhin V. Yu., Vlasov A. A. Vliyanie tekhnologicheskikh kharakteristik alyuminievogo elektrolizera na tolshchinu ukrytiya anodov (Influence of technological characteristics of aluminium electrolyzer on anode covering thickness). Aktualnye problemy sovremennoy nauki v 21 veke : sbornik materialov tretey Mezhdunarodnoy nauchno-prakticheskoy konferentsii (Urgent problems of modern science in the 21 century : collection of materials of the third International scientific-practical conference). Makhachkala, 2013. Part 2. pp. 13–15.
3. Shakhray S. G., Polyakov P. V., Arkhipov G. V., Shaydulin E. R., Sman A. V. Ukrytie anodnogo massiva kak podsistema alyuminievogo elektrolizera (Anode massif covering as a subsystem of aluminium electrolyser). Metallurg = Metallurgist. 2014. No. 12. pp. 84–90.
4. Sman A. V., Bazhin V. Yu. Ukryvnye materialy anodnogo massiva vysokoampernogo alyuminievogo elektrolizera (tezisy) (Covering materials of anode massif of high-amperage aluminium electrolyzer (thesises)). XLI Nedelya nauki Sankt Peterburgskogo Gosudarstvennogo Polytekhnicheskogo Universiteta: materialy nauchno-prakticheskoy konferentsii s Mezhdunarodnym uchastiem. Chast VI (The XLI Week of Science in the Peter The Great Saint-Petersburg Polytechnic University: materials of scientific-practical conference with International participation. Part VI). Saint Petersburg : Publishing House of Polytechnic University, 2012. p. 152.

5. Shakhray S. G., Polyakov P. V., Mikhalev Yu. G. Ukrytie anodnogo massiva alyuminievogo elektrolizera. Obzor sovremennykh praktik zarubezhnykh alyuminievykh zavodov (Covering of anode massif of aluminium electrolyzer. Review of modern practices of foreign aluminium plants). Sbornik dokladov VII Mezhdunarodnogo kongressa “Tsvetnye metally-2015” (Collection of reports of the VII International congress “Non-ferrous metals-2015”). Krasnoyarsk, September 14–18, 2015. pp. 160–161.
6. Wilkening S., Reny P., Murphy B. Anode cover material and bath lеvel control. Light Metals. — San Francisco, California : TMS, 2005. pp. 367–372.
7. Richards N. E. Anode Covering Practices. Proceedings of the 6th Australasian Aluminium Smelting Technology Conference and Workshop. Queenstown, New Zealand, 1998. pp. 143–152.
8. K. Gijotheim. Tekhnologiya elektroliticheskogo proizvodstva alyuminiya. Teoreticheskiy i prikladnoy podkhod (Technology of electrolytic production of aluminium. Theory and applied approach). K. Gijotheim, B. J. Welch. Norway, 1980. p. 326.
9. Blasques J. E. M., Guilherme E. da Mota, Giancarlo De Gregoriis. The importance of cover stability and cover practice on cell stability and performance. Proceedings of the 9th Australasian Aluminium Smelting Technology Conference and Workshop. Terrigal, New South Wales, 2007. p.
10. Taylor M. P., Johnson G. L., Andrews E. W., Welch B. J. The Impact of Anode Cover Control and Anode Assembly Design on Reduction Cell Performance. Light Metals. Charlotte, North Carolina : TMS, 2004. pp. 199–206.
11. Andrews E. W., Taylor M. P., Johnson G. L., Coad I. The Impact of Anode Cover Control and Anode Assembly Design on Reduction Cell Performance. Part 2. Light Metals. San Francisco, California : TMS, 2005. pp. 357–363.
12. Perruchoud R. C., Meier M. W., Fischer W. K., Schmidt-Hatting W. H. P. Anode properties, cover materials and cell operation. Light Metals. Warrendale, Pennsylvania : TMS, 2001. pp. 695–700.
13. Halldor Gudmundsson. Improving anode cover material quality at Nordural — quality tools and measures. Light Metals. San Francisco, California : TMS, 2009. pp. 467–472.
14. Woodfield D., Picot G., Harding M. Toward optimum anode cover. Proceedings of the 8th Australasian Aluminium Smelting Technology Conference and Workshop, Yeppon, Australia, 2004. p. 16.

Language of full-text русский
Полный текст статьи Получить