Журналы →  Tsvetnye Metally →  2016 →  №1 →  Назад

Название Phase composition and thermal properties of oxidized nickel ore from Kulikovskoe deposit
DOI 10.17580/tsm.2016.01.03
Автор Selivanov E. N., Sergeeva S. V., Gulyaeva R. I.
Информация об авторе

Institute of Metallurgy of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia:

E. N. Selivanov, Director of Institute, e-mail: pcmlab@mail.ru
S. V. Sergeeva, Junior Researcher
R. I. Gulyaeva, Senior Researcher


Terms of the oxidized nickel ores bedding at the Kulikovskaya group of deposits (Chelyabinsk region) predetermine their open pit output. Information on substantial composition, properties and modes of metals’ presence in oxidized nickel ores are important for treatment modes and processing technologies selection. Compositions and elements allocation in the primary mineral components of the oxidized nickel ores from the Kulikovskoe deposit were determined using radiography, optical microscopy and X-ray spectrum microanalysis. Content of nickel in serpentine, talc, chlorite was determined. Thermal analysis was used to determine the sequence of transformations during ore heating in inert and reducing media. Analysis of resulting gases was also made. There were proved temperature modes of ore roasting as well as nickel and iron reduction from their minerals. It was concluded that if the ores considered are processed by the most common way, including roasting and recovery electrosmelting, the first of the processes should be carried out under the temperatures above 650–700 оС, which allow to completely separate hydrate and carbonate compounds and to prepare the material for further electrothermal smelting.
This work was implemented under the financial support of the Ural Branch of the Russian Academy of Sciences (project No. 15-11-3-31).

Ключевые слова Ore, nickel, heating, phase transformations, microanalysis, thermal properties, roasting, reduction
Библиографический список

1. Tseydler A. A. Metallurgiya medi i nikelya (Metallurgy of copper and nickel). Moscow : Metallurgizdat, 1958. 392 p.
2. Reznik I. D., Ermakov G. L., Shneerson Ya. M. Nikel. Tom 1 (Nickel. Volume 1). Moscow : Nauka i tekhnologii, 2001. 468 p.
3. Mashchenko V. N., Kniss V. A., Kobelev V. A. et al. Podgotovka okislennykh nikelevykh rud k plavke (Preparation of oxidized nickel ores to smelting process). Ekaterinburg : Ural Branch of Russian Academy of Sciences, 2005. 324 p.
4. Nikitin K. K., Glazkovskiy A. A. Nikelenosnye kory vyvetrivaniya ultrabazitov i metody ikh izucheniya (Nickel-bearing of ultrabasites weathering crusts and their investigation methods). Moscow : Nedra, 1970. 216 p.
5. Powder Diffraction File (PDF), produced by the International Centre for Diffraction Data, Newtown Square, PA. Available at : http://www.ucdd.com/products/.
6. Vershinin A. S., Vitkovskaya I. V., Edelshteyn I. I., Varenya G. D. Tekhnologicheskaya mineralogiya gipergennykh nikelevykh rud (Technological mineralogy of hypergene nickel ores). Leningrad : Nauka, 1988. 274 p.
7. Selivanov E. N., Sergeeva S. V., Udoeva L. Yu., Pankratov A. A. Raspredelenie nikelya po fazovym sostavlyayushchim okislennoy nikelevoy rudy Serovskogo mestorozhdeniya (Nickel distribution in the Serovskoye deposit oxide nickel ore phase constituents). Obogashchenie Rud = Mineral processing. 2011. No. 5. pp. 46–50.
8. Selivanov E. N., Lazareva S. V., Udoeva L. Y. Gulyaeva R. I. Structure and thermal transformations of hydrated magnesium silicates. Defect and diffusion forum. 2011. Vol. 312–315. pp. 708–712.

9. Rhamdhani M. A., Hayes P. C., Jak E. Nickel laterite Part 1 microstructure and phase characterisations during reduction roasting and leaching. Mineral Processing and Extractive Metallurgy (Transactions of the Institution of Mining and Metallurgy Section C). 2009. Vol. 118 (3). pp. 129–145.
10. Lazareva S. V., Selivanov E. N., Udoeva L. Yu., Gulyaeva R. I. Termicheskie svoystva vysokomagnezialnoy nikelevoy rudy Serovskogo mestorozhdeniya (Thermal properties of high-magnesial nickel ore of Serovskoye deposit). Trudy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Sovremennye metallurgicheskie materialy i tekhnologii (SMMT’2009)” (Proceedings of International scientific-technical conference “Modern metallurgical materials and technologies (MMMT’2009)”). Saint Petersburg : Peter The Great Saint-Petersburg Polytechnic University, 2009. pp. 177–182.
11. Khoroshavin A. G. Forsterit (Forsterite). Moscow : Teplotekhnika, 2004. 368 p.
12. Bunjaku A., Kekkonen M., Taskinen P., Holappa L. Thermal behavior of hydrous nickel-magnesium silicates when heating up to 750 oC. Mineral Processing and Extractive Metallurgy (Transactions of the Institution of Mining and Metallurgy Section C). 2011. Vol. 120 (3). pp. 139–146.
13. Ivanova V. P., Kasatov B. K., Krasavina T. N. Termicheskiy analiz mineralov i gornykh porod (Thermal analysis of minerals and rocks). Leningrad : Nedra, 1974. 399 p.
14. Samouhos M., Taxiarchou M., Hutcheon R., Devlin E. Microwave reduction of a nickeliferous laterite ore. Minerals Engineering. 2012. Vol. 34. pp. 19–29.
15. Pietila G. K. Reduction of nickel saprolite ore in CO/CO2 – atmosphere. Metallurgy Sc thesis, in Finnish. Aalto University, School of Chemical Technology, Finland, 2011.
16. Chernobrovin V. P., Pashkeev I. Yu., Mikhaylov G. G. et al. Teoreticheskie osnovy protsessov proizvodstva uglerodistogo ferrokhroma iz uralskikh rud (Theoretical basis of the processes of obtaining of carbonaceous ferrochromium from Urals ores). Chelyabinsk : South Ural State University, 2004. 346 p.
17. Zevgolis E. N., Zografidis Ch., Perraki Th., Devlin E. Phase transformations of nickeliferous laterites during preheating and reduction with carbon monoxide. Journal of Thermal Analysis and Calorimetry. 2010. Vol. 100, No. 1. pp. 133–139.
18. Esin O. A., Geld P. V. Fizicheskaya khimiya pirometallurgicheskikh protsessov. Chast 1 (Physical chemistry of pyrometallurgical processes. Part 1). Moscow : Metallurgizdat, 1962. 671 p.
19. Tsuji H. Behavior of Reduction and Growth of Metal in Smelting of Saprolite Ni-ore in Rotary Kiln for Production of Ferro-nickel Alloy. ISIJ International. 2012. Vol. 52 (6). pp. 1000–1009.
20. Bo Li, Hua Wang, Yonggang Wei. The reduction of nickel from low-grade nickel laterite ore using a solid-state deoxidization method. Minerals Engineering. 2011. Vol. 24. pp. 1556–1562.

Language of full-text русский
Полный текст статьи Получить