TECHNOLOGIES FOR PRODUCTION AND UTILIZATION OF REM | |
ArticleName | Lanthanide ions extraction by method of temperature-induced phase separation using substituted phosphine oxides |
ArticleAuthor | Elistratova Yu. G., Mustafina A. R., Tatarinov D. A., Tananaev I. G., Konovalov A. I. |
ArticleAuthorData | A. E. Arbuzov Institute of Organic and Physical Chemistry Kazan Scientific Center Russian Academy of Sciences Yu. G. Elistratova, Researcher of Laboratory, phone: +7 (843) 272-73-94 A. R. Mustafina, Head of Laboratory of Supramolecular Compounds` Physicochemistry D. A. Tatarinov, Junior Researcher of Laboratory of Fluorine Containing Analogues of Natural Compounds A. I. Konovalov, Chief Researcher
A. N. Frumkin Institute of Physical chemistry and Electrochemistryof Ural Department of Russian Academy of Sciences I. G. Tananaev, Chief Researcher |
Abstract | The mixture of Triton X100 and novel dialkyl(diaryl)2-hydroxyphenyl-alkenylphosphine oxides and dialkyl(diaryl)-(2-methyl-4-oxopent-2-yl)phosphine oxides derivatives has been optimized for the extraction of lanthanide ions (La(III), Gd(III) and Lu(III)) from rather acidic media (pH=1) with the use of temperature induced phase separation in mild conditions. Both the extraction efficiency and selectivity have been analyzed for the wide range of phosphine oxide derivatives with hydroxyl, methoxyl or carbonyl group of the various structure and hydrophobicity. The obtained results indicate that both the efficiency and selectivity of micellar extraction are greatly affected by the electron donor capacity of P=O group, which is affected by the length of the hydrophobic substituents neighboring to P=O group. The latter are varied from n-C4H9 to n-C8H17. No effect of the aryl substituents has been found. Though all studied chelating agents exhibit the enhanced extractability towards La(III) ions, the extraction selectivity is the worse for the most efficient chelating agent and vise versa. It has been found that the high hydrophilicity of phosphine oxides does not restrict their use as chelating agents, though they provide less efficient extraction than their more hydrophobic counterparts. The absence of the so-called “third phase” and high concentration (ten-fold and more) of the extracted lanthanides within the surfactant rich phase are the advantages of the developed extraction procedure as compared to the well known liquid-liquid extraction technique. |
keywords | Micelles, phase separation, lanthanide ions, phosphine oxides, extraction, Triton X100, hydrophoby effect, micellar extraction, dialkyl(diaryl)2-hydroxyphenylalkenylphosphine oxides, dialkyl(diaryl)-(2-methyl-4-oxopent-2-yl)phosphine oxides |
References | 1. Mellado J., Llaerado M., Rawet G. Anal. Chim. Acta. 2002. Vol. 458. p. 367. 2. Malofeeva G. I., Chmutova M. K., Rozhkova L. S., Petrukhin O. M., Spivakov B. Ya., Myasoedov B. F. Radiokhimiya – Radiochemistry. 1998. Vol. 40. p. 235. 3. Reiller P., Lemordant D., Hafiane A., Moulin C., Beaucaire C. J. Coll. Interface Sci. 1996. Vol. 177. p. 519. 4. Marcus Y., Kertes A. S. Ion exchange and solvent extraction of metal complexes. Wiley, London, 1969. Vol. 432. 5. Atamas L., Klimchuk O., Rudzevich V., Pirozhenko V., Kalchenko V., Smirnov I., Babain V., Efremova T., Varnek A., Wipff G., Arnaud-Neu F., Roch M., Saadioui M., Bohmer V. J. Supr. Chem. 2002. Vol. 2. p. 421. 6. Reddy M. L. P., Damodaran A. D., Mathur J. N., Murali M. S., Balarama K. M. V., Iyer R. N. Solv. Extr. Ion Exch. 1996. Vol. 14. p. 793. 7. Klimchuk O., Atamas L., Miroshnichenko S., Kalchenko V., Smirnov I., Babain V., Varnek A., Wipff G. J. Incl. Phen. Macr. Chem. 2004. Vol. 49. p. 47. 8. Mastryukova T. A., Kabachnik M. I. J. Org. Chem. 1971. Vol. 336. p. 1201. 9. Preez R. Du, Preston J. S. S. Afr. J. Chem. 1986. Vol. 39. p. 137. 10. Schurhammer R., Erhart V., Troxler L., Wipff G. J. Chem. Soc. Perkin Trans. 2. 1999. Vol. 2423. 11. Turanov A. N., Karandashev V. K., Ragulin V. V. Zhurnal neorganicheskoy khimii – Russian Journal of Inorganic Chemistry. 2009. Vol. 54. p. 535. 12. Safiulina A., Goryunov E., Letyushov A., Goryunova I., Smirnova S., Ginzburg A., Tananaev I., Nifantev E., Myasoedov B. Mendeleev Commun. 2009. Vol. 19. p. 263. 13. Kabachnik M. I., Myasoedov B. F., Mastryukova T. A., Polikarpov Yu. M., Chmutova M. K., Nesterova N. P. Izvestiya Akademii Nauk. Seriya Khimicheskaya – Russian Chemical Bulletin. 1996. Vol. 11. p. 2624. 14. Horwitz E. P., Schulz W. W. Metal Ion Separation and Preconcentration: Progress and Opportunities, Chapter XX. A. H. Bond, M. L. Dietz, R. D. Rogers et al. Amer. Nucl. Soc. 1998. 15. Stalikas C. D. Trends Anal. Chem. 2002. Vol. 21. p. 343. 16. Paleologos E. K., Giokas D. L., Karayannis M. I. Trends Analyt. Chem. 2005. Vol. 24. p. 426. 17. Tatarinov D. A., Mironov V. F., Baronova T. A., Kostin A. A., Kivilapov D. B., Buzykin B. I., Litvinov I. A. Mendeleev Commun. 2010. Vol. 20. p. 86. 18. Elistratova Yu. G., Mustafina A. R., Tatarinov D. A., Mironov V. F., Konovalov A. I. Izvestiya Akademii Nauk. Seriya Khimicheskaya – Russian Chemical Bulletin. 2009. Vol. 11. p. 2156. 19. Patent 2008127831/04. Sposob polucheniya dialkil(aril)-1,1-dimetil-3-oksobut-1-ilfosfinoksidov (The way of obtaining the dialkyl(aryl)-1,1-dimerhyl-3-oxobut-1-ylphosphine oxides). Mironov V. F., Tatarinov D. A., Baronova T. A., Konovalov A. I., Kostin A. A., Kryshtob V. I. Published 27.11.2009. Bulletin No. 33. 20. Serdyuk L. S., Smirnaya V. S. Zhurnal analiticheskoy khimii – Journal of Analytical Chemistry. 1964. Vol. 19. p. 451. 21. Tsogas G. Z., Giokas D. L., Paleologos E. K., Vlessidis A. G., Evmiridis N. P. Anal. Chim. Acta. 2005. Vol. 537. p. 239. |
Language of full-text | russian |
Full content | Buy |