| ArticleName |
Влияние послесварочной термической обработки стальных трубных заготовок на работоспособность буроопускных свай, эксплуатируемых в зоне многолетнемерзлых грунтов |
| ArticleAuthorData |
НТЦ «Газпромнефть», Санкт-Петербург, Россия
С. А. Ялыгин, директор программ технологического развития «Капитальное строительство»
Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия
Б. С. Ермаков, зав. лабораторией ресурса материалов, докт. техн. наук, эл. почта: ermakov_bs@spbstu.ru О. В. Швецов, зам. зав. лабораторией ресурса материалов, канд. техн. наук
Институт физико-технических проблем Севера им. В. П. Ларионова СО РАН, Якутск, Россия Н. И. Голиков, главный научный сотрудник отдела «Технологий сварки и металлургии», докт. техн. наук
Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия С. А. Вологжанина, профессор кафедры материаловедения и технологии художественных изделий, докт. техн. наук, эл. почта: vologzhanina_sa@pers.spmi.ru |
| Abstract |
Проблема обустройства площадок добычи углеводородов в зоне многолетнемерзлых грунтов (ММГ) и необходимость снижения затрат на эти работы требуют более тщательного изучения требований, выдвигаемых к используемым материалам и конструкциям. Анализ нормативно-технической документации показал, что некоторые из данных требований необоснованно завышены. Так, в СП 16.13330.2020 указано, что при изготовлении буроопускных фундаментных свай необходимо обеспечить уровень ударной вязкости сварных соединений, полученных методом сварки высокой частоты, не менее 34 Дж/см2 при температуре минус 60 оС. Это требует проведения объемной послесварочной термической обработки труб, из которых изготавливают сваи, что резко увеличивает стоимость конструкции, приводит к повышению себестоимости строительных работ. Следует отметить, что ГОСТ 20295, по которому изготавливают трубы для свай, и аналогичные ему нормативно-технические документы не содержат таких требований. Выполнен анализ механических свойств и остаточных сварочных напряжений в трубах после термической обработки и без нее. Выполнены полигонные испытания буроопускных свай, установленных в зоне ММГ. Проведенные исследования позволяют утверждать об избыточности требования термической обработки труб и необходимости их отмены.
Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (тема № FSEG-2024-0009 Разработка моделей деградации служебных свойств металлических и композиционных материалов для строительства в условиях многолетнемерзлых грунтах). |
| References |
1. Kudryavtseva O. V., Serebrennikov E. V. Development prospects of the Russian oil and gas production industry in the context of the energy transition and the formation of a low-carbon economy model. Ekonomicheskoe vozrozhdenie Rossii. 2022. No. 2 (72). pp. 137–143. DOI: 10.37930/1990-9780-2022-2-72-137-143 2. Zhdaneev O. V. Ensuring technological sovereignty of the fuel and energy complex industries of the Russian Federation. Zapiski Gornogo instituta. 2022. Vol. 258. pp. 1061–1078. DOI: 10.31897/PMI.2022.107 3. Sukhorukova N. N. Progress in response to challenges. Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov. 2023. Vol. 13. No. 3. pp. 200–211. 4. Pashkevich N. V., Khloponina V. S., Pozdnyakov N. A., Avericheva A. A. Analysis of the problems of reproduction of the mineral resource base of scarce strategic minerals. Zapiski Gornogo instituta. 2024. Vol. 270. pp. 1004–1023. 5. Egorov A. S., Prischepa O. M. Deep structure, tectonics and petroleum potential of the western sector of the Russian Arctic. Journal of Marine Science and Engineering. 2021. Vol. 9, Iss. 3. 258. 6. Gazprom: official company website. Available at: https://www.gazprom.ru/about/production/extraction (accessed: 12.03.2025). 7. Cherepovitsyn A. E., Tsvetkov P. S., Evseeva O. O. Critical analysis of methodological approa ches to assessing the sustainability of Arctic oil and gas projects. Zapiski Gornogo instituta. 2021. Vol. 249. pp. 463–479. DOI: 10.31897/PMI.2021.3.15 8. Prischepa O. M. , Nefedov Y. V. Arctic shelf oil and gas prospects from lower-middle paleozoic sediments of the timan–pechora oil and gas province based on the results of a regional study. Resources. 2022. Vol. 11, Iss. 1. 3. DOI: 10.3390/resources11010003 9. Shammazov I. A., Batyrov A. M. , Sidorkin D. I. Study of the effect of cutting frozen soils on the supports of above-ground trunk pipelines. Applied Sciences. 2023. Vol. 13. pp. 31–39. DOI: 10.3390/app13053139 10. Mammadov A. T., Babaev A. I., Guseynov M. Ch., Musurzaeva B. B. Analysis of causes of casing pipe coupling failure during oil well drilling and development of recommendations for its prevention. Chernye Metally. 2025. No. 1. pp. 42-48. 11. Buslaev G., Tsvetkov P., Lavrik A., Kunshin A., Loseva E., Sidorov D. Ensuring the sustainability of Arctic industrial facilities under conditions of global climate change. Resources. 2021. Vol. 10, Iss. 12. pp. 1–15. DOI: 10.3390/resources10120128 12. Kunshin A., Dvoynikov M., Timashev E., Starikov V. Development of monitoring and forecasting technology energy efficiency of well drilling using mechanical specific energy. Energies. 2022. Vol. 15. 7408. DOI: 10.3390/en15197408 13. Pritula V. V. Corrosion situation on Russian gas and oil pipelines and their industrial safety. Truboprovodny transport: teoriya i praktika. 2015. No. 2 (48). pp. 6–10. 14. Romasheva N., Dmitrieva D. Energy resources exploitation in the Russian Arctic: challenges and prospects for the sustainable development of the ecosystem. Energies. 2021. Vol. 14. 8300. DOI: 10.3390/en14248300 15. Syas’ko V., Shikhov A. Assessing the state of structural foundations in permafrost regions by means of acoustic testing. Appl. Sci. 2022. Vol. 12. 2364. DOI: 10.3390/app12052364 16. Boyarintsev A. V. Representative analysis of the experience of building foundations on permafrost soils. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Stroitelstvo i arkhitektura. 2019. Vol. 10, No. 1. pp. 57–68. DOI: 10.15593/2224-9826/2019.1.06 17. Antipina D. A. Construction of fuel and energy complex facilities in areas of ice lenses and rocky soils. Ekspozitsiya Neft Gas. 2024. No. 9 (110). pp. 40-46. DOI: 10.24412/2076-6785-2024-9-40-46 18. Presnov O. M., Melikhov V. P., Zaytsev S. A., Slivina D. M. Erection of piles in permafrost conditions. Mezhdunarodny nauchno-issledovatelskiy zhurnal. 2022. No. 2–1 (116). pp. 41-43. DOI: 10.23670/IRJ.2022.116.2.006 19. Alekseev A. G., Sazonov P. M., Poverenny Yu., Zelenin D. A., Fefelov A. V., Saitov A. V. Improvement of the design of steel piles in permafrost soils. Promyshlennoe i grazhdanskoe stroitelstvo. 2022. No. 1. pp. 34–38. DOI: 10.33622/0869-7019.2022.01.34-38 20. Yakshibaev I. N., Yakshibaev A. N., Nedoseko I. V. et al. Improving the performance of pile foundations on permafrost heaving soils. Problemy sbora, podgotovki i transporta nefti i nefteproduktov. 2023. No. 5 (145). pp. 63–74. DOI: 10.17122/ntj-oil-2023-5-63-74 21. Alekseev A. G., Rabinovich M. V. Improvement of the regulatory framework in the direction of basis and foundations on permafrost soils. Vestnik NITs Stroitelstvo. 2021. No. 2 (29). pp. 5–12. DOI: 10.37538/2224-9494-2021-2(29)-5-12 22. Kakharov Z. V., Khamroev A. Yu. Modern technologies of pile foundation construction. Innovatsionnye nauchnye issledovaniya. 2022. No. 10 (22). pp. 32–39. DOI: 10.5281/zenodo.7236486 23. Alekseev A. G., Rabinovich M. V. Improvement of the regulatory framework in the direction of basis and foundations on permafrost soils. Vestnik NITs Stroitelstvo. 2021. No. 2 (29). pp. 5–12. DOI: 10.37538/2224-9494-2021-2(29)-5-12 24. Shaposhnikov N. O., Yalygin S. A., Ermakov B. S., Shvetsov O. V., Ermakov S. B., Golikov N. I., Sleptsov O. I., Klochkov Yu. S. Analysis of reliability and performance of bored precast piles in the development of oil fields in the permafrost zone. Izvestiya vuzov. Neft i gaz. 2024. No. 4 (166). pp. 96-118. DOI: 10.31660/0445-0108-2024-4-96-118 25. Velikotsky M.A. Corrosive activity of soils in various natural zones. Vestnik Moskovskogo universiteta. Seriya: Georgafiya. 2010. No. 1. pp. 21–27. 26. Pantyukhova K. N., Negrov D. A., Burgonova O. Yu., Putintsev V. Yu. Study of causes of the decrease in the mechanical characteristics of hot-deformed bends made of 09G2S steel. Omskiy nauchny vestnik. 2019. No. 1 (163). pp. 11–16. DOI: 10.25206/1813-8225-2019-163-11-16 27. Moskvichenok D. V. Biogeochemical features of soils of the Messoyakha river basin (Tazovsky district of the Yamalo-Nenets Autonomous Okrug). Vestnik TyumGU. Ekologiya i prirodopolzovanie. 2016. Vol. 2, No. 2. pp. 8–21. DOI: 10.21684/2411-7927-2016-2-2-8-21 28. Pegin P. A., Filimonov D. S. Features of design and construction of buildings in seismically hazardous areas with permafrost soils. Izvestiya Peterburgskogo universiteta putey soobshcheniya. 2023. No. 4. pp. 878–890. 29. Yalygin S. A., Ermakov B. S., Stolyarov A. V., Koynov E. G., Shvetsov O. V., Shaposhnikov N. O., Tokarev V. O., Golikov N. I. Effect of post-weld heat treatment on the performance properties of 09G2S steel used for the manufacture of bored precast piles. PRO Neft. 2024. Vol. 9, No. 1. pp. 173-182. DOI: 10.51890/2587-7399-2024-9-1-173-182 30. GOST 20295-85. Steel Welded pipes for main gas-and-oil pipelines. Specifications. Introduced: 01.01.1987. 31. GOST 10704-91. Electrically welded steel line-weld tubes. Range. Introduced: 01.01.1993. 32. Agmet O. A., Stepanov P. P., Khlybov S., Efron L. I., Zharkov S. V. Features of microstructure formation in welded pipe joints during high-frequency welding and subsequent local heat treatment. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2022 Vol. 78. No. 2. pp. 135–149. DOI: 10.32339/0135-5910-2022-2-135-149 33. Tkachuk M. A., Bagmet O. A., Stepanov P. P. Development of modes of local heat treatment of welded seams of medium diameter pipes welded with high-frequency currents. Stal. 2016. No. 3. pp. 54–59. 34. Goncharov N. G., Yushin A. A., Kolesnikov O. I., Nesterov G. V., Azarin A. I. Study of the influence of heat treatment on the metallophysical properties of weld metal. Nauka i tekhnologii truboprovodnogo transporta i nefteproduktov. 2021. No. 11. pp. 412–419. DOI: 10.28999/2541-9595-2021-11-4-412-419 35. Kolikov A. P., Ti S. O., Sidorova T. Yu. Experimental and mathematical methods for calculation of residual stresses in production of welded pipes. Chernye Metally. 2021. No. 7. pp. 41–49. 36. Pozhedanov S. Yu., Fedoseeva I. P. Features of design and construction of buildings and structures on structurally unstable soils. Vestnik nauki. 2024. No. 10 (79). pp. 906–916. 37. Presnov O. M., Ivanova L. A., Bychkovskaya S. I., Lomova D. A. Pile on permafrost soil. Ekonomika stroitelstva. 2022. No. 1. pp. 41–45. 38. GOST R ISO 3183–2009. Steel pipes for pipelines petroleum and natural gas industries. General specifications. Introduced: 01.01.2011. 39. GOST R 54153–2010. Steel. Method of atomic emission spectral analysis. Introduced: 01.01.2012. 40. GOST 1497–84. Metals. Methods of tension test. Introduced: 01.01.1986. 41. GOST 6996–66. Welded joints. Methods of mechanical properties determination. Introduced: 01.01.1986. 42. GOST 2999–75. Metals and alloys. Vickers hardness test by diamond pyramid. Introduced: 01.07.1976. 43. GOST 9454–78. Metals. Method for testing the impact strength at low, room, and high temperature. Introduced: 01.01.1979. 44. GOST 19281–2014. High strength rolled steel. General specification. Introduced: 01.01.2015. |