Journals →  Chernye Metally →  2025 →  #8 →  Back

Mineral Processing
ArticleName Improvement of the quality of iron concentrate by separate beneficiation of two technological grades
DOI 10.17580/chm.2025.08.01
ArticleAuthor A. E. Pelevin
ArticleAuthorData

Ural State Mining University, Yekaterinburg, Russia

A. E. Pelevin, Dr. Eng., Prof., Associate Prof., Dept. of Mineral Processing, e-mail: a-pelevin@yandex.ru

Abstract

A flow chart with separate beneficiation of two technological grades obtained after the first stage of grinding was investigated. The flow chart was tested under laboratory conditions for titanomagnetite ore and ferruginous quartzites. A modified drum magnetic separator with an increased bath depth was used to separate the MMS-I industrial product into grades 1 (rich) and 2 (poor). A special feature of the separator is the reduced magnetic field induction at the bottom of the bath (0.005 T) with the standard magnetic field induction on the drum surface. When processing titanomagnetite ore according to the scheme with separate beneficiation of technological grades 1 and 2, there was an increase in the iron content in the total concentrate by 1.99 % (from 63.4 to 65.39 %) compared to the standard scheme. The iron and silicon dioxide content in the concentrate obtained from grade 1 was 66.6 % and 1.21 %, respectively. When processing ferruginous quartzites according to the developed scheme, the iron content in the total concentrate increased by 1.57 % (from 65.9 to 67.47 %) compared to the standard scheme. The iron content in the concentrate obtained from grade 1 was 69.98 %. The use of the scheme with separate beneficiation of process grades led to an increase in the iron content in the total tailings by 0.54 % (from 6.38 to 6.92 %) for titanomagnetite ore and by 0.56 % for ferruginous quartzites (from 26.64 to 27.2 %).

keywords Iron ore, process grade, separate beneficiation of grades, drum magnetic separator, magnetic field induction, high-quality concentrate, iron content
References

1. Löf A., Ericsson M., Löf O. Iron ore market review. CIS Iron and Steel Review. 2019. Vol. 17. pp. 4–9.
2. Yushina T. I., Chanturia E. L., Dumov A. M., Myaskov A. V. Modern trends of technological advancement in iron ore processing. Gornyi Zhurnal. 2021. No. 11. pp. 75–83.
3. Kuskov V. B., Lvov V. V., Yushina T. I. Increasing the recovery ratio of iron ores in the course of preparation and processing. CIS Iron and Steel Review. 2021. Vol. 21. pp. 4–8.
4. Bojian Chen, Tao Jiang, Jing Wen, Lin Li, Peng Hu. Review of pellets and blast furnace slag research progress: the effects of MgO on metallurgical properties. Ironmaking & Steelmaking. 2023. Vol. 50, Iss. 8. pp. 1022–1036. DOI: 10.1080/03019233.2023.2192113
5. Chernousov P. I., Karpalev A. E., Kramar A. V., Podusovskiy V. O. Comprehensive index of compound blast furnace smelting. CIS Iron and Steel Review. 2022. Vol. 23. pp. 9–14.
6. Bobkov V. I., Dli M. I., Sokolov A. M., Rubin Y. B. Analysis of chemical-metallurgical agglomeration processes during charge sintering. CIS Iron and Steel Review. 2020. Vol. 20. pp. 7–11.
7. Metolina P., de Andrade R. S., Ramos B., Guardani R. Hydrogen direct reduction ironmaking process for zero CO2 emission: A study on the effect of particle properties changes during the multiple non-catalytic gas-solid reactions. Minerals Engineering. 2023. Vol. 201. 108188. DOI: 10.1016/j.mineng.2023.108188
8. Haque N. Chapter 20 - Life cycle assessment of iron ore mining and processing. Iron Ore (Second Edition). Mineralogy, Processing and Environmental Sustainability. 2022. pp. 691–710. DOI: 10.1016/B978-0-12-820226-5.00007-0
9. Küster F., Scharm Ch., An F., Reinmöller M. et al. Direct reduction of iron ore pellets by N2/H2 mixture: In-situ investigation and modelling of the surface temperature during reduction progression. Minerals Engineering. 2024. Vol. 215. 108827. DOI: 10.1016/j.mineng.2023.108827
10. Chuan Dai, Pan Chen, Honghu Tang, Jiayan Liu, Wei Sun. Preparation of high-purity magnetite from iron ore concentrate. Minerals Engineering. 2024. Vol. 216. 108899. DOI: 10.1016/j.mineng.2024.108899
11. Badawi M., Belissont R., Turrer H., Foucaud Y. Assessment of flotation process efficiency in producing DR concentrate from a low-grade iron ore. Minerals Engineering. 2024. Vol. 216. 108838. DOI: 10.1016/j.mineng.2024.108838
12. Rodrigues W. J., Fernandes P. A., Peres A. E. C. The effect of etheramine type on the hydrophobicity of quartz particles from iron ore. Minerals Engineering. 2024. Vol. 214. 108769. DOI: 10.1016/j.mineng.2024.108769
13. Pelevin A. E., Sytykh N. A. Efficiency of screens and hydrocyclones in closed-cycle grinding of titanomagnetite ore. Mining Informational and Analytical Bulletin. 2022, No. 5, P. 154–166. DOI: 10.25018/0236_1493_2022_5_0_154
14. Frausto J. J., Ballantyne G. R., Runge K., Powell M. S. et al. The effect of screen versus cyclone classification on the mineral liberation properties of a polymetallic ore. Minerals Engineering. 2021. Vol. 169. 106930. DOI: 10.1016/j.mineng.2021.106930
15. Kosoy G. M. Development and testing of a combined process based on the use of a flat-bottomed hydrocyclone and a multi-frequency screen. Obogashchenie Rud. 2022. No. 4. pp. 3–8.
16. Terekhin E. P., Chueva E. A., Khvorostyanova V. I. Improvement of beneficiation technology to improve the quality of iron ore concentrate. Tekhnika i tekhnologiya gornogo dela. 2023. No. 3. pp. 82–93. DOI: 10.26730/2618-7434-2023-3-82-93
17. Senchenko A. E., Kulikov Yu. V., Zakharov A. G., Ismagilov R. I. Development of technology for additional beneficiation of ordinary iron ore concentrate for a concentrator. Gornaya promyshlennost. 2024. No. 5S. pp. 158–165. DOI: 10.30686/1609-9192-2024-5S-158-165
18. Osipova N. V. Investigation of the possibility of obtaining concentrate production targets based on a mathematical model of an ferrum ore processing site. CIS Iron and Steel Review. 2023. Vol. 25. pp. 4–9.
19. Opalev A. S., Cherezov A. A. Experience of mastering magnetic-gravity separation at enterprises of Russia and CIS countries to improve the quality of iron ore raw materials. Gornaya promyshlennost. 2023. No. 3. pp. 122–128. DOI: 10.30686/1609-9192-2023-3-122-128
20. Jian-feng Zhou, Song Zhang, Feng Tian, Chun-lei Shao. Simulation of oscillation of magnetic particles in 3D microchannel flow subjected to alternating gradient magnetic field. Journal of Magnetism and Magnetic Materials. 2019. Vol. 473. pp. 32–41. DOI: 10.1016/j.jmmm.2018.10.028
21. Pelevin A. E. Increasing the efficiency of iron-ore dressing by separation in an alternative magnetic field. Chernye metally. 2021. No. 5. pp. 4–9.
22. Korchevenkov S. A., Aleksandrova T. N. Preparation of standard iron concentrates from nontraditional forms of raw material using a pulsed magnetic field. Metallurgist. 2017. Vol. 61, Iss. 5–6. pp. 375–381. DOI: 10.1007/s11015-017-0503-z
23. Dmitriev A. N., Vitkina G. Yu., Petukhov R. V., Kornilkov S. V. et al. The characteristic of ores and concentrates of the open society «EVRAZ KGOK». Advanced Materials Research. 2013. Vol. 834–836. Р. 364-369. DOI: 10.4028/www.scientific.net/AMR.834-836
24. Pelevin A. E., Kornilkov S. V., Dmitriev A. N., Bagazeev V. K. Quality improvement of magnetite concentrate in separate processing of different iron ore types and varieties. MIAB. 2021. No. 11–1. pp. 306–317. DOI: 10.25018/0236_1493_2021_111_0_306
25. Fominykh V. G., Kraeva Yu. P., Larina N. V. Petrology and ore genesis of the Kachkanar massif. Sverdlovsk : Izdatelstov RISO UNTs AN SSSR, 1987. 180 p.
26. Pelevin A. E., Sytykh N. A., Cherepanov D. V. Particle size impact on dry magnetic separation efficiency. MIAB. 2021. No. 11–1. pp. 293–305. DOI: 10.25018/0236_1493_2021_111_0_293
27. Ismagilov R. I., Yushina T. I., Dumov A. M. Contrast range examination of rich iron ore from Mikhailovskoe deposit and evaluation of possibility of its preliminary concentration via physical methods. CIS Iron and Steel Review. 2023. Vol. 26. pp. 22–32.
28. Ismagilov R. I., Kozub A. V., Gridasov I. N., Shelepov E. V. Modern directions of increasing the efficiency of processing ferruginous quartzites on the example of JSC “Mikhailovsky MPP named after A.V. Varichev”. Gornaya promyshlennost. 2020. No. 4 pp. 98–103. DOI: 10.30686/1609-9192-2020-4-98-103
29. Pelevin A. E., Sytykh N. A. Iron concentrate stage separation by means of drum magnetic separator with modified separating bath. Obogaschenie Rud. 2016. No. 4. pp. 10–15.
30. Pilov P. I. Optimization of mineral beneficiation indicators based on the kinetics of separation processes. Gorny informatsionno-analiticheskiy byulleten. 2007. No. 7. pp. 396–401.
31. Pelevin A. E. Effects of magnetic flocculation on iron-bearing ore concentration. Obogashchenie Rud. 2021. No 4, pp. 15–20.
32. Rybkin V. S., Leontyev L. I., Leushin V. N., Evstyugin S. N., Gorbachev V. A. Development of technological schemes for metallization of Kachkanar pellets. Stal. 2008. No. 7. pp. 16–20.
33. Selivanov D. A., Bystrov I. G. Results of a comprehensive geological and economic assessment of the Kachkanar group of deposits. Razvedka i okhrana nedr. 2015. No. 3. pp. 46–52.
34. Rakhimov H. K., Chanturia E. L., Shekhirev D. V. Use of electrochemical effects in the process of flotation beneficiation of ordinary iron ore concentrate. Gornye nauki i tekhnologii. 2024. Vol. 9. No. 1. pp. 21–29. DOI: 10.17073/2500-0632-2023-12-196
35. Ismagilov R. I., Baskaev P. M., Ignatova T. V., Shelepov E. V. The prospects for expanding the iron ore mineral resource base through the processing of ferruginous quartzite of the Mikhailovskoye deposit. Obogashchenie Rud. 2020. No. 3. pp. 19–24.

Language of full-text russian
Full content Buy
Back