| ArticleName |
Обоснование влияния способа разработки
на напряженно-деформированное состояние подземных
сооружений рудника «Октябрьский» методом численного
моделирования |
| ArticleAuthorData |
ООО «Институт Гипроникель», Санкт-Петербург, Россия
Головченко Ю. Ю., научный сотрудник лаборатории геотехники, GolovchenkoYuYu@nornik.ru Румянцев А. Е., зав. лабораторией геотехники, канд. техн. наук
Заполярный филиал ПАО «ГМК «Норильский никель», Норильск, Россия
Кисель А. А., главный инженер Центра геодинамической безопасности Устинов А. К., начальник отдела геотехнического сопровождения горных работ Центра геодинамической безопасности |
| References |
1. Geller Yu. A. Factors affecting the process of soil and rock mass destruction. Vestnik Zabaykalskogo gosudarstvennogo universiteta. 2021. Vol. 27, No. 5. pp. 17–25. 2. Davydov A. A., Sonnov M. A., Rumyantsev A. E., Golovchenko Yu. Yu., Trofimov A. V. Geotechnical justification of primary cutting of the ore body of rich ore deposits of Glubokaya mine using methods of stepwise numerical simulation under gravitational–tectonic stress field conditions. Gornaya Promyshlennost. 2022. No. 5. pp. 83–91. 3. Vysotin N. G., Eremenko V. A., Kosyr eva M. A. Experience of geotechnical core logging of borehole environment: A case-study of carbonate rocks. Eurasian Mining. 2024. No. 2. pp. 33–37. 4. Zubov V. P., Trofimov A. V., Kolganov A. V. Influence of ground control features on indicators of dilution in mines of the Talanakh ore province. MIAB. 2024. No. 12-1. pp. 87–106. 5. Kongar-Syuryun Ch. B., Kovalski E. R. Hardening backfill at potash mines: Promising materials regulating stress–strain behavior of rock mass. Geologiya i Geofizika Yuga Rossii. 2023. No. 13(4). pp. 177–187. 6. Tyupin V. N. Geomechanical behavior of jointed rock mass in the large-scale blast impact zone. Eurasian Mining. 2020. No. 2. pp. 11–14. 7. Fedotova Yu. V., Kasparyan E. V., Kuznetsov N. N. Influence of active faults on stresses in nonuniform hard rock masses. Trigger Effects in Geosystems : Proceedings of All-Russian Conference with International Participation. Moscow : GEOS, 2017. pp. 318–326. 8. Konurin A. I., Neverov S. A., Neverov A. A., Shchukin S. A. Problem of numerical modeling of stress–strain state and stability of fr actured rock mass. Fundamentalnye i prikladnye voprosy gornykh nauk. 2019. Vol. 6, No. 2. pp. 144–150. 9. Yetkin M. E., Özfırat M. K., Yenice H., Onargan T. Finite element analysis of stress distribution in underground galleries with varying dimensions. Environmental and Earth Sciences Research Journal. 2024. Vol. 11, No. 1. pp. 20–27. 10. Sepehri M., Apel D. B., Szymanski J. Full Three-dimensional finite element analysis of the stress redistribution in mine structural pillar. Powder Metallurgy & Mining. 2013. Vol. 3, Iss. 1. ID 119. 11. Mayboroda-Khidirova L. R. Submodeling method applications for numerical solutions of geomechanics problems on different scale levels. Topical Issues of Rational Use of Natural Resources : Proceedings of XVIII International Forum-Contest of Students and Young Researchers. Saint-Petersburg : Sankt-Peterburgskiy gornyi universitet, 2022. Vol. 2. pp. 45–46. 12. Zhou X.-P., Zhang T., Qian Q.-H. A two-dimensional ordinary state-based peridy namic model for plastic deformati on based on Drucker–Prager criteria with non-associated flow rule. International Journal of Rock Mechanics and Mining Sciences. 2021. Vol. 146. ID 104857. 13. Khanal M., Qu Q., Zhu Y., Xie J., Zhu W. et al. Characterization of overburden deformation and subsidence behavior in a kilometer deep longwall mine. Minerals. 2022. Vol. 12, Iss. 5. ID 543. 14. Fadeev A. B. Method of Final Elem ents in Geomechanics. Moscow : Nedra, 1987. 221 p. 15. CAE Fidesys Professional. Fidesys. Available at: https://cae-fidesys.com/cae-fidesysprofessional (accessed: 02. 05.2025). 16. Kholodilov A. N., Istomin R. S., Kirilenko V. I. Improvement technique for manufacturing equivalent materials for modeling nonlinear geomechanical processes in underground mineral mining. MIAB. 2024. No. 10. pp. 108–122. 17. Hoek E., Diederichs M. S. Empirical estimation of rock mass modulus. International Journal of Rock Mechani cs and Mining Sciences. 2006. Vol. 43, Iss. 2. pp. 203–215. 18. Vásárhelyi B., Kovács D. Empirical methods of calculating the mechanical parameters of the rock mass. Periodica Polytechnica Civil Engineering. 2017. Vol. 61, No. 1. pp. 39–50. 19. Applications Overview. Rocscience Inc., 2025. Available at: https://www.rocscience.com/help/rs2/documentation (accessed: 06. 02.2025). |