Journals →  Горный журнал →  2025 →  #6 →  Back

ГЕОМЕХАНИЧЕСКОЕ И МАРКШЕЙДЕРСКОЕ ОБЕСПЕЧЕНИЕ ГОРНЫХ РАБОТ
ArticleName Применение алгоритма кластеризации данных для анализа структурных особенностей массива горных пород
DOI 10.17580/gzh.2025.06.08
ArticleAuthor Румянцев А. Е., Воробьев Д. В., Устинов А. К., Калякина А. В.
ArticleAuthorData

ООО «Институт Гипроникель», Санкт-Петербург, Россия

Румянцев А. Е., зав. лабораторией геотехники, канд. техн. наук, RumyantsevAE@nornik.ru
Воробьев Д. В., инженер 3-й категории лаборатории геотехники

 

Центр геодинамической безопасности ЗФ ПАО «ГМК «Норильский никель», Норильск, Россия

Устинов А. К., начальник отдела геотехнического сопровождения горных работ
Калякина А. В., главный специалист отдела непрерывного мониторинга и контроля горного давления

Abstract

Представлен алгоритм реализации кластерного анализа для обработки и интерпретации структурных геологических данных, полученных в результате геотехнического ориентированного бурения скважин. В рамках исследования рассмотрены и реализованы два подхода к кластеризации ориентированных структурных данных. Для верификации полученных результатов и оценки эффективности алгоритмов кластеризации проведено сравнение со стереографическими проекциями, построенными в специализированном программном обеспечении DIPS. Сравнение показало, что результаты, полученные с помощью кластерного анализа, сопоставимы с визуальными группировками на стереограммах. Таким образом, предложенный подход позволяет расширить инструментарий анализа структурных данных.

keywords Геотехническое описание керна, ориентированные структуры, стереограмма, кластерный анализ, классификация, иерархическая кластеризация
References

1. Zubov V. P., Trofimov A. V., Kolganov A. V. Influence of ground control features on indicators of dilution in mines of the Talanakh ore province. MIAB. 2024. No. 12-1. pp. 87–106.
2. Zakharov V. N., Klebanov D. A., Makeev M. A., Radchenko D. N. Analysis of methods to prepare and transform information entering data repositories for effective management of the mining system. Gornaya Promyshlennost. 2023. No. 5S. pp. 10–17.
3. Sabyanin G. V., Balandin V. V., Trofimov A. V., Kuzmin S. V. Geomechanical survey procedure for Oktyabrsky mine. Gornyi Zhurnal. 2020. No. 6. pp. 11–16.
4. Meng F., Wong L. N. Y., Zhou H., Wang Z., Zhang L. Asperity degradation characteristics of soft rock-like fractures under shearing based on acoustic emission monitoring. Engineering Geology. 2020. Vol. 266. ID 105392.
5. Darbinyan T. P., Tsymbalov A. A., Zubov V. P., Kolganov A. V. Impact of rock mass jointing on dilution of disseminated copper–nickel ore in Oktyabrsky Mine. Gornyi Zhurnal. 2023. No. 6. pp. 19–25.
6. Kongar-Syuryun Ch. B., Kovalski E. R. Hardening backfill at potash mines: Promising materials regulating stress-strain behavior of rock mass. Geologiya i Geofizika Yuga Rossii. 2023. Vol. 13, No. 4. pp. 177–187.
7. Pleshko M. S., Pankratenko A. N., Pleshko M. V., Nasonov A. A. Assessment of stress–strain behavior of shaft lining in bottomhole area during sinking by real-time monitoring and computer modeling data. Eurasian Mining. 2021. No. 1. pp. 25–30.
8. Kaplunov D. R., Aynbinder I. I., Fedotenko V. S., Yukov V. A. Underground ore mining technologies: Current challenges, sustainable development and transition to a new technological paradigm. Gornyi Zhurnal. 2021. No. 9. pp. 4–11.
9. Korchak S. A., Abaturova I. V., Savintsev I. A., Storozhenko L. A. Rock mass quality assessment to reveal potentially hazardous areas in open pit mine design. MIAB. 2022. No. 9. pp. 87–98.
10. Abaturova I. V., Storozhenko L. A., Pisetsky V. B., Savintsev I. A. Use of geological and structural analysis in evaluating engineering and geological conditions of mineral deposits. Engineering and Mining Geophysics : Proceedings of the 16th Conference and Exhibition. Houten : European Association of Geoscientists and Engineers, 2020. Vol. 2020. DOI: 10.3997/2214–4609.202051096
11. Miftakhov R. F., Avdeev P. A., Gogonenkov G. N., Bazanov A. K., Efremov I. I. Mapping of faults based on machine learning and neural networks. Geologiya Nefti i Gaza. 2021. No. 3. pp. 123–136.
12. Fedotov G. S., Sapronova N. P. Geological and mining information systems as a tool for digital transformation of production processes in mining companies. Marksheyderiya i nedropolzovanie. 2021. No. 4(114). pp. 54–59.
13. Zuev B. Yu. Methodology of modeling nonlinear geomechanical processes in blocky and layered rock masses on models made of equivalent materials. Journal of Mining Institute. 2021. Vol. 250. pp. 542–552.
14. Abdrakhmanov M. I., Lapin S. E., Shnayder I. V. Clustering algorithms in express-analysis of seismic data. MIAB. 2019. No. 6. pp. 27–44.
15. Arthur D., Vassilvitskii S. K-means++: The advantages of careful seeding. SODA ‘07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia : Society for Industrial and Applied Mathematics, 2007. pp. 1027–1035.
16. Raschka S., Mirjalili V. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2. 3rd ed. Packt, 2019. 770 p.
17. Vakhromeeva E. N., Zenzinova Yu. B. Automation of company clustering by financial metrics using the k-means algorithm on big data. Diskussiya. 2024. No. 5(126). pp. 46–50.
18. Lourenço A., Bulò S. R., Rebagliati N., Fred A. L. N., Figueiredo M. A. T. et al. Probabilistic consensus clustering using evidence accumulation. Machine Learning. 2013. Vol. 98, Iss. 1–2. pp. 331–357.
19. Miraftabzadeh S. M., Colombo C. G., Longo M., Foiadelli F. et al. K-means and alternative clustering methods in modern power systems. IEEE Access. 2023. Vol. 11. pp. 119596–119633.
20. Hu H., Liu J., Zhang X., Fang M. An effective and adaptable k-means algorithm for big data cluster analysis. Pattern Recognition. 2023. Vol. 139. ID 109404.

Language of full-text russian
Full content Buy
Back