Journals →  CIS Iron and Steel Review →  2022 →  #1 →  Back

Metal Science and Metallography
ArticleName Determination of rail steel structural elements via the method of atomic force microscopy
DOI 10.17580/cisisr.2022.01.16
ArticleAuthor A. E. Balanovskiy, M. G. Shtaiger, V. V. Kondratyev, A. I. Karlina

Irkutsk National Research Technical University (Irkutsk, Russia):

A. E. Balanovskiy, Cand. Eng., Associate Prof.


Mechel Steel Management Company (Moscow, Russia):
M. G. Shtaiger, Cand. Eng., Chief operating Officer


A. P. Vinogradov Institute of Geochemistry of the Siberian Branch of the Russian Academy of Sciences (Irkutsk, Russia):
V. V. Kondratyev, Cand. Eng., Senior Scientific Researcher


Moscow State University of Civil Engineering (Moscow, Russia):
A. I. Karlina, Cand. Eng., Scientific Researcher, e-mail:


The distance between pearlite plates is an important parameter for control of ductility and deformation strengthening of carbon steels. Most methods of optical end electronic microscopy for measuring the distances between cementite and pearlite plates in pearlite steels make definite complications when applying to high-dispersed microstructures. At present time rail steels with pearlite structure are fabricated with interlamellar distance 60-130 nm. This research used atomic force microscopy (AFM) for measuring interlamellar distances of pearlite structure in the heat-affected zone (HAZ) of rail welded joint. Qualitative evaluation of cementite and ferrite plates thickness was obtained for the first time, depending on location relating to a rail weld fusion line. The input of cementite plates in strength on the base of Hall-Petch equation was considered. Influence of the relationship between the size of pearlite colonies dp and thickness of cementite plates tc on metal destruction stress of a HAZ welded joint was assessed.

keywords Structure, pearlite, ferrite, cementite, plate thickness, interlamellar distance, atomic force microscopy, rail steel, welded joint, heat affected zone

1. Tushinskiy L. I., Bataev A. A., Tikhomirova L. B. Pearlite structure and construction strength of steel. Novosibirsk : Nauka, 1993. 280 p.
2. Schastlivtsev V. M., Mirzaev D. A., Yakovleva I. L. et al. Pearlite in carbon steels. Ekaterinburg : UrO RAN. 2006. 132 p.

3. Yuryev A. A., Gromov V. E., Ivanov Yu. F., Rubannikova Yu. A. Structure and properties of long-size rails with differential quenching after extremely durable operation. Novokuznetsk : Poligrafist. 2020. 253 p.
4. Gromov V. E., Yuriev A. B., Morozov K. V., Ivanov Yu. F. Microstructure of quenched rails. Cambridge : CISP Ltd. 2016. 153 p.
5. Sahay S. S., Mohapatra G., Totten G. E. Overview of pearlitic rail steel: Accelerated cooling, quenching, microstructure, and mechanical properties. Journal of ASTM. 2009. No. 6, pp. 1–26.
6. Modi O. P., Deshmukh N., Mondal D. P., Jha A. K., Yegneswaran A. H., Khaira H. K. Effect of interlamellar spacing on the mechanical properties of 0.65 % C steel. Materials Characterization. 2001. Vol. 46, pp. 347–352.
7. Porcaro R. R., Faria G. L., Godefroid L. B., Apolonio G. R., Cândido L. C., Pinto E. S. Microstructure and mechanical properties of a flash butt welded pearlitic rail. Journal of Materials Processing Technology. 2019. Vol. 270. pp. 20–27.
8. Shtayger M. G., Balanovsky A. E., Kondratev V. V., Karlina A. I., Govorkov A. S. Application of scanning electronic microscopy for metallography of welded joints of rails. Advances in Engineering Research Proceedings of the International Conference "Aviamechanical engineering and transport" (AVENT 2018). 2018. pp. 360-364.
9. Mansouri H., Monshi A. Microstructure and residual stress variations in weld zone of flash-butt welded railroads. Science and Technology of Welding and Joining. 2004. Vol. 9. No. 3. pp. 237–245.
10. Kuchuk-Yatsenko S. I., Didkovskiy A. V., Shvets V. I., Rudenko P. M., Antipin E. V. Contact butt welding of high-strength rails from modern production facilities. Avtomaticheskaya svarka. 2016. Vol. 753. No. 5-6. pp. 7-16.
11. Balanovsky A. E., Shtaiger M. G., Kondratev V. V., Karlina A. I., Govorkov A. S. Comparative analysis of structural state of welded joints rails using method of Barkhausen effect and ultrasound. Journal of physics: conference series. 2018. pp. 012006.
12. Nishikawa L. P., Goldenstein H. Divorced Eutectoid on Heat-Affected Zone of Welded Pearlitic Rails. JOM. 2019. Vol. 71. pp. 815–823. DOI: 10.1007/s11837-018-3213-5.
13. Weingrill L., Krutzler J., Enzinger N. Temperature field evolution during flash-butt welding of railway rails. Materials Science Forum. 2016. Vol. 879. pp. 2088–2093. DOI: 10.4028/
14. Marder A. R., Bramfitt B. L. The effect of morphology on the strength of pearlite. MTA. 1976. No. 7. pp. 365–372. DOI: 10.1007/BF02642832.
15. Gridnev V. I., Gavrilyuk V. G., Meshkov Yu. Ya. Strength and ductility of cold-deformed steel. Kiev : Naukova dumka. 1974. 237 p.
16. Izotov V. I., Pozdnyakov V. A., Lukyanenko E. V., Usanova O. Y., Filippov G. A. Influence of the pearlite fineness on the mechanical properties, deformation behavior, and fracture characteristics of carbon steel. Physics of Metalls and Metallography. 2007. Vol. 103. No. 5. pp. 519–529.
17. Embury D., Fisher R. M. The structure and properties of drawn pearlite. Acta Metallurgica. 1966. Vol. 14. Iss. 2. pp. 147–159.
18. Meshkov Yu. A., Pakharenko G. A. Metal structure and brittleness of steel products. Kiev : Naukova dumka. 1985. 265 p.
19. Gridnev V. N., Gavrilyuk V. G. Cementite decomposition during steel plastic deformation (review). Metallofizika. 1982. Vol. 4. No. 3. pp. 74-86.
20. Tereshchenko N. A. et al. Development of rotation model of plastic deformation during drawing of pearlite steels with different alloying systems. Fizika metallov i metallovedenie. 2015. Vol. 116. No. 3. pp. 289–299.

Full content Determination of rail steel structural elements via the method of atomic force microscopy