Journals →  Tsvetnye Metally →  2017 →  #8 →  Back

ArticleName Deposition of multilayer nanostructured nickel films on silicon’s surface by pyrolytic method
DOI 10.17580/tsm.2017.08.09
ArticleAuthor Amelina D. E., Astakhov M. V., Butyrina S. A., Stakhanova S. V.

National University of Science and Technology MISiS, Moscow, Russia:

D. E. Amelina, Post-Graduate Student of a Chair “Physical chemistry”, e-mail:
M. V. Astakhov, Professor, Head of a Chair “Physical chemistry”
S. A. Butyrina, Student of a Chair “Physical chemistry”
S. V. Stakhanova, Assistant Professor


Thanks to intensive experimental research, a significant progress has been made in film coating technology in the recent years. The production of highquality thin films, especially the films with a thickness of several nanometers, is required to produce devices of various complexities. All methods for applying of film coatings are characterized by parameters such as the rate of film production and their thickness. Different methods for applying of films are used depending on morphology of the substrate and its relief. When it comes to the topic of development of microsystem technology in scientific literature, there are more and more reports about methods for depositing metallic and dielectric layers of nickel on semiconductor substrates such as silicon. While the production of nickel films on silicon’s surface by vacuum deposition methods is a well-mastered procedure, the production of thin-film coatings by the method of chemical deposition of films from organic solutions involves considerable difficulties. The experimental studies results regarding the structure of metallic nickel films on silicon substrates, first obtained by a combined method of manual deposition of thin layer of liquid solution and pyrolysis, were revealed. The optimal concentrations of a coating solution and its pyrolysis temperature were established. Based on the studies it was concluded that the method for deposition of nickel films — in order to obtain continuous metal coatings — is convenient for both smooth and relief substrates. The described method stands out due to the possibility of varying the metal film’s thickness, the coating solution preservation and a “manual” deposition control.
This work was carried out with the support of the Ministry of Education and Science of the Russian Federation according to the subsidiary agreement No.14.577.21.0123 (20.10.2014) (unique identifier of the applied scientific investigation RFMEFI57714X0123).

keywords Pyrolytic method, β-radiation nanostructured Ni films, pyrolysis of nickel carboxylates, betavoltaic effect, semiconductor substrates

1. Akulshin Yu. D., Lure M. S., Pyatyshev E. N., Glukhovskoy A. V., Kazakin A. N. Beta-voltaic MEMS converter. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Informatika. Telekommunikatsii. Upravlenie. 2014. No. 5. pp. 35–42.
2. Nagornov Yu. S., Murashev V. N. Simulation of betavoltaic effect on silicon pin-structures under irradiation from -source of nickel-63. Fizika i tekhnika poluprovodnikov. 2016. Vol. 50, Iss. 1. pp. 17–22.
3. Prelas M. A., Weaver C. L., Watermann M. L., Lukosi E. D., Schott R. J., Wisniewski D. A. A review of nuclear batteries. Progress in Nuclear Energy. 2014. Vol. 75. pp. 117–148.
4. Young Rang Uhm, Byoung Gun Choi, Jong Bum Kim, Dong-Hyuk Jeong, Kwang Jae Son. Study of a Betavoltaic Battery Using Electroplated Nickel-63 on Nickel Foil as a Power Source. Nuclear Engineering and Technology. 2016. Vol. 48, No 3. pp. 773–777.
5. Reznev A. A., Pustovalov A. A., Maksimov E. M., Perederiy A. N., Petrenko N. S. The Perspectives of Creation of Miniaturised Power Cell Using Direct Power Conversion with Nickel-63 Isotope as an Active Sourse. Nano- i mikrosistemnaya tekhnika. 2009. No. 3. pp. 14–16.
6. Zuo G., Zhou J., Ke G. A Simple theoretical model for 63Ni betavoltaic battery. Applied Radiation and Isotopes. 2013. Vol. 82. pp. 119–125.
7. Ayzenshtat G. I., Prokopev D. G. Nuclear battery. Patent RF, No. 2461915. Published: 20.09.2012. Bulletin No. 26.
8. Pandey B., Das D., Kar A. K. Electrical and magnetic properties of electrodeposited nickel incorporated diamond-like carbon thin films. Applied surface science. 2015. Vol. 337. pp. 195–207.
9. Jin Joo Kim, Young Rang Uhm, Byoung Gun Choi, Kwang Jae Son. Study of the electroless deposition of Ni for betavoltaic battery using PN junction without seed layer. Journal of Nanomaterials. 2015. Vol. 2015. DOI: 10.1155/2015/283291
10. Akhtar M., Revaprasadu N., Malik M. A., Raftery J. Deposition of phase pure nickel sulfide thin films from bis (O-alkylxanthato) – nickel (II) complexes by the aerosol assisted chemical vapour deposition (AACVD) method. Materials Science in Semiconductor Processing. 2015. Vol. 30. pp. 368–375.
11. Malyar I. V., Stetsyura S. V. The surface modification of semiconductor substrate by organic monolayer coatings and irradiation. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta. 2010. Vol. 4, No. 3. pp. 30–35.
12. Popadinets Yu. V., Sidorov D. A. The low temperature electrolyte technology of nickel metal coating at the front-side of photoelectric cell. Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy. 2012. No. 2. pp. 9–11.
13. Stakhanova S. V., Nikonorova N. I., Lukovkin G. M., Volynskii A. L., Bakeev N. F. Mechanical properties of metal-filled composites on the basic of polypropylene matrix and nickel. Vysokomolekulyarnye soedineniya. Seriya B. 1992. Vol. 34, No. 7. pp. 28–34.
14. Lundin V. V., Sakharov A. V., Tsatsulnikov A. F., Zavarin E. E., Besyulkin A. I., Fomin A. V., Sizov D. S. MOCVD growth of AlGaN epilayers and AlGaN/GaN superlattices. Fizika i tekhnika poluprovodnikov. 2004. Vol. 38, No. 6. pp. 705–709.
15. Letimin V. N., Vdovin K. N., Druzhkov V. G., Makarova I. V., Nasyrov T. M. Analysis of the ways for the disposal of gas cleaning dust and sludge at the metallurgical enterprises. CIS Iron and Steel Review. 2014. No. 1. P. 54–56.
16. Gershevich D. B., Patrusheva T. N., Snezhko N. Yu., Sukhova G. I., Kholkin A. I. Oxide protective films produced by extraction-pyrolysis method. Khimicheskaya tekhnologiya. 2010. Vol. 11, No. 12. pp. 717–721.
17. Sukhova G. I., Patrusheva T. N., Chudinov E. A., Patrushev V. V. Development of material obtained by extraction-pyrolytic technique for electrodes of lithiumionic cells. Elektrokhimicheskaya energetika. 2005. Vol. 5, No. 1. pp. 51–56.
18. Patrin G. S., Polyakova K. P., Patrusheva T. N., Velikanov D. A., Volkov N. V., Balaev D. A., Patrin K. G., Romanchenko A. S. Magnetic properties of La0.7Sr0.3MnO3 manganite films obtained by extraction pyrolysis. Izvestiya RAN. Seriya Fizicheskaya. 2007. Vol. 71, No. 5. pp. 732–735.
19. Vinogradov A. S., Patrusheva T. N., Kirik S. D., Sukhova G. I., Menshikov V. V., Kholkin A. I. Films of solid electrolytes with bismuth produced by extraction and pyrolytic method. Khimicheskaya tekhnologiya. 2006. Vol. 7, No. 9. pp. 6–10.
20. Patrusheva T. N., Kindal A. V., Kalenistov K. A., Bondarenko G. N., Tsyganova S. I., Kholkin A. I. Extraction-pyrolytic method of obtaining of oxide films for solar elements. Khimicheskaya tekhnologiya. 2008. Vol. 9, No. 9. pp. 426–429.
21. Patrusheva T. N., Vinogradov S. A., Makhnovskaya N. V., Romanchenko A. N., Kolovskiy Yu. V., Shelovanova G. N., Kholkin A. I. Conducting transparent oxide films, obtained by extraction-pyrolytic method. Khimicheskaya tekhnologiya. 2007. Vol. 8, No. 5. pp. 197–201.

Language of full-text russian
Full content Buy