Journals →  Tsvetnye Metally →  2017 →  #6 →  Back

MATERIALS SCIENCE
ArticleName Obtaining the high-pure titanium based alloys. Investigation of their composition and properties
DOI 10.17580/tsm.2017.06.14
ArticleAuthor Kotsar M. L., Kaplenkov V. N., Alekberov Z. M.
ArticleAuthorData

Leading scientific-investigation institute of chemical technology (VNIIKhT), Moscow, Russia:

M. L. Kotsar, Head of Laboratory, e-mail: kotsar@vniiht.ru
V. N. Kaplenkov, Leading Researcher
Z. M. Alekberov, Leading Engineer

Abstract

We analyzed the possible reasons of titanium alloy products cracking in the nuclear energetic units' heat-exchange equipment as a result of hydration. One of the basic factors, defining the low hydrogen resistance of alloys is the insufficient purity of their basis (titanium sponge (O, N, C, Fe)), and usage for titanium β-phase stabilizers alloying (Si, V, Cr, Mn, Fe, Mo). The low stability of the properties of the shape memory alloys based on titanium nickelide is also connected with insufficient purity of the basic components (O, N, C, Fe et al.). Iodide titanium TI-1, obtained from wastes and circulation of titanium rolled products is offered to use as alternative to titanium sponge. The leading scientific-investigation institute of chemical technology created and operates the experimental base for obtaining of alloys based on high-pure titanium for nuclear energetics, aviation-space and medical equipment, investigation of their composition, structure and properties. This base includes the complex of furnace equipment for smelting of titanium-based alloys and material science complex. On the basis of high-pure (iodide) titanium, argon arc and induction smelting of charges obtained the basic and new α-alloys with Al, Zr and Sn for heatexchange equipment of nuclear energetic units and the shape memory alloy of TiNi. Their chemical composition and hardness (HB, HV) were investigated. Institute of Metallurgy and Materials Science carried out the cold and hot deformation of alloy samples before the belt and after etching and annealing, and their preparation to transfer in specialized material science organizations for investigation of microstructure and definition of physical-mechanical and corrosion properties.

keywords Titanium iodide, basis, α-alloys, nuclear energetic, heat exchange equipment, life service, extension, medical equipment, titanium nickelide, reshaping, temperature, stability, precussors
References

1. Ilin A. A., Kolachev B. A., Polkin I. S. Titanium alloys. Composition, structure, properties : reference book. Moscow : VILS-MATI, 2009. 520 p.
2. State Standard GOST 19807–91. Wrought titanium and titanium alloys. Grades. Introduced: 1992–07–01. Moscow : Izdatelstvo standartov, 1991.
3. ASTMF 2063–05. Standard specification for wrought nickel-titanium shape memory alloys for medical devices and surgical implants.
4. Kotsar M. L., Antipov V. V., Akhtonov S. G., Varkentin Ya. Ya., Ziganshin A. G., Indyk S. I., Kazantsev V. N., Kotrekhov V. A., Lazarenko V. V., Lositskiy A. F., Morenko O. G., Shtutsa M. G. High purity titanium. Application and production outlook. Titan. 2009. No. 3 (25). pp. 34–38.
5. Kotsar M. L., Lavrikov S. A., Nikonov V. I., Aleksandrov Al. Vl., Akhtonov S. G., Aleksandrov An. Val. High-pure titanium, zirconium and hafnium in nuclear energetics. Atomnaya energiya. 2011. Vol. 111, No. 2. pp. 72–77.
6. Vetrov V. M., Gritskevich G. E., Panina M. E., Mikhaylov V. I., Semenov V. A. Experience of titanium alloys operation in the design of transport energetic units. Branch conference “Titanium in nuclear industry”. JSC MSZ, Kolontaevo 29–30 October 2008.
7. Kotsar M. L., Lavrikov S. A., Nikonov V. I., Aleksandrov A. V., Akhtonov S. G., Chineykin S. V. Enhancement of purity of titanium alloys for nuclear power engineering due to hidrogeneration reduction-guarentee of titanium products service life extension. Titan. 2011. No. 2 (32). pp. 29–36.
8. Cchastlivaya I. A., Ushkov S. S., Karasev E. A., Levin I. V. Problems of development of normative-technical basis of titanium alloys intended for equipment, pipelines and nonrotational parts of new generation atomic power units. Titan. 2009. No. 1 (23). pp. 50–53.
9. Oryshchenko A. S., Leonov V. P., Schastlivaya I. A., Igolkina T. N. Titanium alloys used in nuclear power engineering. Titan. 2014. No. 3 (45). pp. 20–30.
10. Kotsar M. L., Nikonov V. I., Anishchuk D. S., Akhtonov S. G., Zavodchikov S. Yu., Ziganshin A. G., Smirnov V. G., Shtutsa M. G. Iodide titanium — perspective material for shape memory alloys and hydrogen-resistant alloys for heat-exchange equipment of nuclear power installations. Voprosy atomnoy nauki i tekhniki. Seriya “Fizika radiatsionnykh povrezhdeniy i radiatsionnoe materialovedenie”. 2012. No. 5 (81). pp. 93–97.
11. Kopova I., Strasky J., Harcuba P., Landa M., Janecek M., Bacakova L. Newly developed Ti – Nb – Zr – Ta – Si – Fe biomedical beta titanium alloys with increased strength and enhanced biocompability. Materials Science and Engineering. 2016. Vol. 60. pp. 230–238.
12. Technical Requirements TU 48-4-282–86. Iodide titanium. Moscow, 1986.
13. Rolsten R.F. Iodide Metals and Metal Iodides : translated from English. Ed.: A. I. Belyaeva, V. N. Vigdorovicha. Moscow : Metallurgiya, 1967. 524 p.
14. Elyutin A. V., Denisova N. D., Baskova A. P., Bystrova O. P. Behavior of admixtures during the high-pure titanium obtaining by iodide refining. Nauchnye trudy Giredmeta. 1981. Vol. 106. pp. 3–9.
15. Kotsar M. L., Morenko O. G., Shtutsa M. G., Akhtonov S. G., Aleksandrov A. V., Ziganshin A. G., Indyk S. I., Kucheryavenko E. N., Lazarenko V. V., Lapidus A. O., Pogadaev V. A., Popov A. M. Obtaining of high-purity titanium, zirconium, and hafnium by the method of iodide refining in industrial conditions. Neorganicheskie materialy. 2010. Vol. 46, No. 3. pp. 332–340.
16. Aleksandrov A. V., Afonin E. A., Dello S. A., Kollerov M. Yu., Konstantinov V. V., Kuznetsov S. Yu., Polkin I. S. Bases of titanium and titanium-based alloys melting in installation with cold crucible. Titan. 2010. No. 2 (28). pp. 41–46.
17. Kollerov M. Yu., Gusev D. E., Sharonov A. A., Ovchinnikov A. V., Aleksandrov A. V. Formation of TN1 alloy structure under strain and thermal treatment. Titan. 2010. No. 3 (29). pp. 4–10.
18. Kollerov M. Yu., Aleksandrov A. V., Kuznetsov S. Yu., Dello S. A., Konstantinov V. V., Ovchinnikov A. V., Oreshko E. I., Lobastov V. A. Melting method and technology influence on structure and properties of titanium nickelide alloys. Titan. 2011. No. 2 (32). pp. 22–28.
19. Kollerov M. Yu., Spektor V. S., Gusev D. E., Mamaev V. S. Composition and structure influence on elasticity and superelasticity characteristics of titanium based alloys. Titan. 2010. No. 4 (30). pp. 13–17.
20. Kollerov M. Yu., Skvortsova S. V., Sharonov A. A., Sharonov I. A. The shape memory effect in commercial constructional titanium alloys. Titan. 2010. No. 1 (27). pp. 31–38.
21. Ilin A. A., Vishnevskiy A. A., Kollerov M. Yu., Gusev D. E., Pechetov A. A. Material science and biomechanical advantages of nitinol fixings with selfadjusting compression application for sternal osteosynthesis. Titan. 2009. No. 4 (26). pp. 46–53.
22. Gusev D. E., Kollerov M. Yu., Chernyshova A. A., Chistilin S. A. Assessment of biomechanical compatibility of supporting plates for external fixation based on titanium and titanium nickelide. Titan. 2011. No. 2 (32). pp. 48–52.
23. Gusev D. E., Kolerov M. Yu., Oreshko E. I., Rudakov S. S., Korolev P. A. Evaluation of the biomechanical compatibility of implantable support plates of titanium-based and nickel-titanium alloys by computer simulation. Titan. 2011. No. 3 (33). pp. 39–44.
24. Popov N. N., Korchuganov I. A., Larkin V. F., Presnyakov D. V. Investigation of the effect of the shape memory in the industrial titanium alloy VT16 for its using in the units of nuclear energy safety. International conference “Alloys with the shape memory effect: properties, technology, prospects”. 26–30 May 2014. Vitebsk, Belarus. Vitebsk : Vitebsk State Technological University, 2014. pp. 81–83.
25. Ma J., Karaman I., Noebe R. D. High temperature shape memory alloys. International Materials Reviews. 2010. Vol. 55, No. 5. pp. 257–315.
26. Titanium nickelide alloys with shape memory. Part I. Structure, phase transformations and properties. Ed.: V. G. Pushin. Ekaterinburg : UrO RAN, 2006. pp. 96–112.
27. Golberg D., Xu Y., Murakami Y., Otsuka K., Ueki T., Horikawa H. Hightemperature shape memory effect in Ti50Pd50–xNix (x = 10, 15, 20) alloys. Materials Letters. 1995. Vol. 22. pp. 241–246.
28. Kumar P., Lagoudas D. C. Experimental and microstructural characterization of simultaneous creep, plasticity and phase transformation in Ti50Pd40Ni10 high-temperature shape memory alloy. Acta Materialia. 2010. Vol. 58. pp. 1618–1628.
29. Levinskiy Yu. V. State diagrams of metals with gases. Moscow : Metallurgiya, 1975. 296 p.
30. Kogan Ya. D., Kolachev B. A., Levinskiy Yu. V., Nazimov O. P., Fishgoyt A. V. Constants of metal interaction with gases. Moscow : Metallurgiya, 1987. 367 p.
31. Minakova A. V., Minakov V. N., Minakov N. V. About the influence of hydrogen in technical pure titanium ignots on plasticity. Thesis of report on the International conference “Hydrogen materials science and chemistry of metal hydrides”. Katsiveli. 2–8 September 1997. p. 87.
32. Elliot R. P. Structures of double alloys. Moscow : Metallurgiya, 1970. Vol. 1. 456 p.
33. Shapovalova E. M., Babenko E. P. Hydride formation in titanium powders of various methods of production. Materials of the IX International conference “Hydrogen materials science and chemistry of carbon nanomaterials”. Sevastopol. 5–11 September 2005. Kiev, 2005. pp. 238, 239.
34. Lashkarev G. V., Brodovoy A. V., Solonin S. M., Kolesnichenko V. G. Influence of hydration on magnetic properties of intermetallide TiFe. Thesis of report on the International conference “Hydrogen materials science and chemistry of metal hydrides”. Katsiveli, 2–8 September 1995. p. 25.
35. Solomina T. A., Rakhmetov E. B., Ibrasheva R. Kh., Zhubanov K. A. Catalysis on intermetallic hydrides in water. Thesis of report on the International conference “Hydrogen materials science and chemistry of metal hydrides”. Katsiveli, 2–8 September 1995. p. 107.
36. Bezuglaya T. N., Mitrokhin S. V., Verbetskiy V. N. Interaction of hydrogen with of Ti(Zr) – Mn – V system alloys. Materials of the VII International conference “Hydrogen materials science and chemistry of metal hydrides”. Alushta, 16–22 September 2001. p. 243.
37. Neelakantan L., Monchev B., Frotscher M., Eggeler G. The influence of secondary phase carbide particles on the passivity behaviour of NiTi shape memory alloys. Materials and Corrosion. 2012. Vol. 63. pp. 979–984.
38. Rahim M., Frenzel J., Frotscher M., Pfetzing-Micklich J., Steegmüller R., Wohlschlögel M., Mughrabi H., Eggeler G. Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Materialia. 2013. Vol. 61. pp. 3667–3686.
39. Toro A., Zhou F., Wu M. H., Van Geertruyden W., Misiolek W. Z. Characterization of non-metallic inclusions in superelastic NiTi tubes. Journal of Materials Engineering and Performance. 2009. Vol. 18. pp. 448–458.
40. Meisner L. L., Rotshtein V. P., Markov A. B, Meisner S. N., Yakovlev E. V., D’yachenko F. Effect of nonmetallic and intermetallic inclusions on crater formation on the surface of TiNi alloys under the electron-beam impact. Procedia structural integrity. 2016. Vol. 2. pp. 1465–1472.
41. State Standard GOST 849–70. Primary nickel. Specifications. Introduced: 1970–07–01.
42. Technical Requirements TU 95.46–97. Iodide zirconium. Introduced: 1998-03-01.
43. Hansen M., Anderko K. Constitution of Binary Alloys. Vol. 2 : reference book. Translated from English. Moscow : Metallurgizdat, 1962. 609 p.

Language of full-text russian
Full content Buy
Back