Журналы →  Chernye Metally →  2026 →  №1 →  Назад

Metal Science
Название Carbonitrides in niobium-alloyed steel. Part 2. Carbonitride formation in liquid and solidifying steel
DOI 10.17580/chm.2026.01.07
Автор E. Yu. Kolpishon, P. V. Kovalev, S. V. Ryaboshuk
Информация об авторе

CNIITMASH, Moscow, Russia

E. Yu. Kolpishon, Dr. Eng., Prof., Chief Researcher, e-mail: kolpishon@bk.ru

 

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

P. V. Kovalev, Cand. Eng., Associate Prof., Deputy Director for Educational Activities, Institute of Mechanical Engineering, Materials, and Transport, e-mail: kovalev_pv@spbstu.ru
S. V. Ryaboshuk, Senior Lecturer

Реферат

The article presents a comprehensive study of the mechanisms of niobium carbonitride formation in steels and alloys for various applications. Based on thermodynamic analysis and experimental data, three main types of inclusions are characterized in detail: primary (blocky, formed in the liquid metal and at the beginning of crystallization), secondary (eutectic, forming within the liquidus-solidus range during the final stages of solidification), and tertiary (solid-phase, precipitating below the solidus temperature). It is shown that the morphology, size distribution, and phase composition of the carbonitrides are determined by the alloy’s chemical composition, modification technology, and crystallization conditions. It has been established that for structural steels, the optimal niobium content does not exceed 0.4-0.5 %, while large primary and secondary inclusions (>1 μm) have a negative impact on plastic and toughness properties. In contrast, in heat-resistant alloys, eutectic carbonitrides, whose sizes are comparable to the cast grain size, form a structure that effectively impedes grain boundary sliding during creep. The highest efficiency in restricting grain growth is demonstrated by nanometric tertiary carbonitrides, which form during the decomposition of supersaturated solid solutions. A critical parameter determining the influence of dispersed particles on the structure is the ratio of their sizes and interparticle spaces to the grain size, where meeting the condition 5dinc < dgrain ensures effective inhibition of boundary migration. The results of the work allow for the optimization of niobium alloying technologies for the targeted formation of the structure in accordance with the performance requirements for the steel or alloy.

Ключевые слова Niobium, carbonitrides, ferroniobium, solidification, structural steels, heat-resistant alloys
Библиографический список

1. Kolpishon E. Yu., Kovalev P. V., Ryaboshuk S. V. Carbonitrides in niobium-alloyed steel. Part 1. Chernye Metally. 2025. No. 10. pp. 89-94.
2. Vinograd M. V., Gromova G. I. Inclusions in alloy steel and alloys. Moscow : Metallurgiya, 1972. 216 p.
3. Kondrat’ev S. Yu., Anastasiadi G. P. Characterization of microstructure and chemical microinhomogeneity of HP40NbTi cast alloy after different crystallization rates. Metallography, Microstructure and Analysis. 2021. Vol. 10. pp. 675-683.
4. Palatkina L. V. et al. Features of the formation of niobium-rich carbide phases in the melt and their effect on the resistance of high-strength casing pipes to sulfide stress corrosion cracking. Chernye Metally. 2024. No. 5. pp. 36-42.
5. Anže Bajželj et al. Influence of nickel on niobium nitride formation in as-cast stainless steels. Metals. 2022. Vol. 12. 609.
6. Yavoyskiy V. I., Bliznyukov S. A., Vishkarev A. F. et al. Inclusions and gases in steel. Moscow : Metallurgiya, 1979. 272 p.
7. Kazakov A. A., Ryaboshuk S. V. Physicochemical foundations of steelmaking processes: guidelines for laboratory work. St. Petersburg : St. Petersburg State Polytechnical University, 2013. 44 p.
8. Knupel H. Desoxidation und Vakuumbehandlung von Stahlschmelzen. Translated from Germany. Moscow : Metallurgiya, 1973. 312 p.
9. Grigoryan V. A. et al. Physicochemical calculations of steelmaking processes. Moscow: Metallurgiya, 1989. 288 p.
10. Kondrat’ev S. Yu., Belikova Yu. A., Zabavicheva E. V. Experimental study of the structure of Nb-based primary carbides in cast refractory alloys HP40NbTi. Metal Science and Heat Treatment. 2022. Vol. 64, Nos. 7-8. pp. 370-378.
11. Kondrat’ev S. Yu., Sviatysheva E. V., Anastasiadi G. P., Petrov S. N. Fragmented structure of niobium carbide particles in as-cast modified HP alloys. Acta Materialia. 2017. Vol. 127. pp. 267-276.
12. Kolpishon E. Yu., Dub V. S., Ivanov I. A. et al. Development of technology for heat treatment of low-carbon structural steels to ensure target parameters of microstructure and ductility margin. Part 1. Selection of target parameters of the structure. Tyazheloe mashinostroenie. 2025. No. 4. pp. 2-13.
13. Shijun Wang, Gen Li. et al. Cooling rate-dependent microstructural evolution: Segregation and precipitated phase in S30432 steel for ultra-supercritical power plants. Journal of Materials Research and Technology. 2025. Vol. 36. pp. 3261–3273.

Language of full-text русский
Полный текст статьи Получить
Назад