| Название |
Verification of a computer simulator for heat treatment modes for
ShKh15 steel |
| Информация об авторе |
Polzunov Altai State Technical University, Barnaul, Russia
M. N. Zenin, Junior Researcher, e-mail: mikhail.zenin.96@mail.ru
Polzunov Altai State Technical University, Barnaul, Russia1 ; Innovation Center for Modern Textile Technologies (Jianhu Laboratory), Shaoxing, China2 ; Wuhan Textile University, Wuhan, China3 S. G. Ivanov, Dr. Eng., Leading Researcher1,2, National Key Laboratory of Digital Textile Machinery of Hubei Province3, e-mail: serg225582@yandex.ru
Wuhan Textile University, Wuhan, China1 ; Jiangsu Suyang Packaging Co., Ltd, Yizheng City, Jiangsu Province, China2 S. A. Zemlyakov, Cand. Eng., Leading Researcher, National Key Laboratory of Digital Textile Machinery of Hubei Province1, Chief Researcher2, e-mail: kobalt_20@mail.ru
Moscow Polytechnic University, Moscow, Russia1 ; Wuhan Textile University, Wuhan, China2 ; University of Science and Technology MISIS, Moscow, Russia3 V. B. Deev*, Dr. Eng., Prof., Head of the Dept. of Welding Equipment and Technologies1, Prof., National Key Laboratory of Digital Textile Machinery of Hubei Province2, Professor of the Department of Metal Forming3, e-mail: deev.vb@mail.ru
Polzunov Altai State Technical University, Barnaul, Russia1 ; Zhejiang Briliant Refrigeration Equipment Co., Ltd, Xingchang, China2 M. A. Guryev, Cand. Eng., Associate Prof., Dept. of Mechanical Engineering Technology1, Technical Director2, e-mail: gurievma@mail.ru
*Corresponding author |
| Реферат |
The results of verification of specialized software developed on the basis of freely distributed open-source software are presented. The essence of the modification was to expand the limits of the chemical composition for which the software allows correct calculations, as well as to expand the capabilities of the software. In the current work, the results of constructing our own isothermal decay diagrams of supercooled austenite using modified software were compared with similar diagrams for ShKh15 steel and its imported analogues based on experimental data available in the domestic and foreign literature. It is shown that, in general, according to the verification results, the modified software copes with the tasks of constructing diagrams. The correlation coefficient between the software and experimental diagrams for ShKh15 steel is at least 0.76, which is sufficient to solve most production problems, which are primarily based on determining the optimal mode of heat treatment of steels depending on the chemical composition of the steels. In addition to constructing isothermal and thermokinetic diagrams, the modified software allows you to calculate the hardenability depth for steel with a specific chemical composition using the DFB (distance to the first appearance of the bainite) method, as well as plot the phase state of steel depending on the heating temperature, which in turn allows you to calculate the final phase state of the steel after quenching. And thus, it is possible to predict the approximate amount of residual austenite in hardened high-carbon alloy steels of the ShKh15 type, the content of which, for example, is critical for precision parts of fuel equipment operating under severe operating conditions. |
| Библиографический список |
1. Deev V. B., Prusov E. S., Vdovin K. N., Bazlova T. A., Temlyantsev M. V. Influence of melting unit type on the properties of middle-carbon cast steel. ARPN Journal of Engineering and Applied Sciences. 2018. Vol. 13, Iss. 3. pp. 998–1001. 2. Prikhod’ko O. G., Deev V. B., Prusov E. S., Kutsenko A. I. Influence of Thermophysical Characteristics of Alloy and Mold Material on Casting Solidification Rate. Steel in Translation. 2020. Vol. 50, Iss. 5. pp. 296–302. 3. Prikhodko O. G., Deev V. B., Kutsenko A. I., Prusov E. S. Analysis of the solidification process of castings depending on their configuration and material of the mold. CIS Iron and Steel Review. 2023. Vol. 25. pp. 31–38. 4. Deev V. B., Arapov S. L., Kosovich A. A., Lesiv E. M. Determination of rational heat treatment modes for new high-manganese austenitic steel using thermodynamic modeling. Chernye Metally. 2023. No. 11. pp. 75–80. 5. Rios P. R. Relationship between non-isothermal transformation curves and isothermal and non-isothermal kinetics. Acta Materialia. 2005. Vol. 53, Iss. 18. pp. 4893–4901. 6. Popov A. A., Popova A. E. Thermist's handbook. Isothermal and thermokinetic diagrams of the decomposition of supercooled austenite. Moscow : Mashgiz, 1961. 430 p. 7. Vander Voort G. F. Atlas of time-temperature diagrams for irons and steels. ASM International, 1991. 783 p. 8. Stickels C. A. Carbide refining heat treatments for 52100 bearing steel. Metall Trans. 1974. Vol. 5. pp. 865–874. DOI: 10.1007/BF02643140 9. Bhadeshia H. K. D. H. Thermodynamic analysis of isothermal transformation diagrams. Met. Sci. 1982. Vol. 16. pp. 159–165. DOI: 10.1179/030634582790427217 10. Avrami M. Kinetics of phase change I: General theory. J. Chem. Phys. 1939. Vol. 7. 1103. DOI: 10.1063/1.1750380 11. Cahn J. W. Transformation kinetics during continuous cooling. Acta Metall. 1956. Vol. 4. pp. 572–575. DOI: 10.1016/0001-6160(56)90158-4 12. Umemoto M., Horiuchi K., Tamura I. Transformation kinetics of bainite during isothermal holding and continuous cooling. Transactions of the Iron and Steel Institute of Japan. 1982. Vol. 22. pp. 854–861. DOI: 10.2355/isijinternational1966.22.854 13. Umemoto M., Horiuchi K., Tamura I. Pearlite transformation during continuous cooling and its relation to isothermal transformation. Transactions of the Iron and Steel Institute of Japan. 1983. Vol. 23, 690–695. DOI: 10.2355/isijinternational1966.23.690 14. Wierszyłłowski I. A. The Effect of the Thermal Path to Reach Isothermal Temperature on Transformation Kinetics. Metall. Trans. A. 1991. Vol. 22A. pp. 993–999. DOI: 10.1007/BF02661092 15. Li M. V., Niebuhr D. V., Meekisho L. L., Atteridge D. G. A computational model for the prediction of steel hardenability. Metall. Mater. Trans. B. 1998. Vol. 29B. pp. 661–672. DOI: 10.1007/s11663-998-0101-3 16. Lee J. L., Pan Y. T., Hsieh K. C. Assessment of ideal TTT diagram in C-Mn steel. Mater. Trans. JIM. 1998. Vol. 39. pp. 196–202. DOI: 10.2320/matertrans1989.39.196 17. Collins J., Piemonte M., Taylor M., Fellowes J., Pickering E. A rapid, open-source CCT predictor for low alloy steels, and its application to compositionally heterogeneous material. Metals. 2023. Vol. 13. 1168. DOI: 10.3390/met13071168 18. Preston S. Influence of vanadium on the hardenability of a carburizing steel. J. Heat Treat. 1990. Vol. 8. pp. 93–99. DOI: 10.1007/BF02831629 19. SAE J1975. Case hardenability of carburized steels. - SAE International: 400 Commonwealth Drive, Warrendale, PA 15096–0001 USA, 1997. 20. Doane D. V. Carburized steel – update on a mature composite. J. Heat Treat. 1990. Vol. 8. pp. 33–53. DOI: 10.1007/BF02833065 21. Eldis G. T., Smith Y. E. Effect of composition on distance to first bainite in carburized steels. J. Heat Treat. 1980. Vol. 2. pp. 62–72. DOI: 10.1007/BF02833075 22. Callister W. D., Rethwisch D. G. Fundamentals of materials science and engineering, an integrated approach, 3rd ed. John Wiley : Hoboken, NJ, 2008. 911 p. 23. Shackelford J. F. Introduction to materials science for engineers, 7th ed. Pearson, Prentice Hall : Upper Saddle River, NJ, 2009. 533 p. 24. Kalpakjian S., Schmid S. Manufacturing engineering and technology. Prentice Hall : Upper Saddle River, NJ, 2009. 1216 p. 25. Buchmayr B., Kirkaldy J. S. Modeling of the temperature field, transformation behavior hardness, and mechanical response of low alloy steels during cooling from the austenite region. J. Heat Treat. 1990. Vol. 8. pp. 127–136. DOI: 10.1007/BF02831633 26. Kirkaldy J. S., Feldman S. E. Optimization of steel hardenability control. J. Heat Treat. 1989. Vol. 7. pp. 57–64. DOI: 10.1007/BF02833188 27. Umemoto M., Tsuchiya K. Fundamental properties of cementite and their present understanding. Tetsu-to Hagane. 2002. Vol. 88, Iss. 3. pp. 117–128. DOI: 10.2355/tetsutohagane1955.88.3_117 28. Yoshizawa M., Igarashi M., Nishizawa T. Effect of Tungsten on the Ostwald ripening of M23C6 carbides in martensitic heat-resistant steel. Tetsu-to Hagane. 2005. Vol. 91, Iss. 2. pp. 272–277. DOI: 10.2355/tetsutohagane1955.91.2_272 29. Ma Li, Jia T., Gao X. H., Ni R. Mechanism of cementite spheroidization from different initial microstructures in Fe-0.65C-2.33Mn alloy. Key Engineering Materials. Vol. 815. pp. 107–113. DOI: 10.4028/www.scientific.net/KEM.815.107 30. Davis J. R. Classification and properties of tool and die steels. In ASM Specialty Handbook – Tool Materials; ASM International: Materials Park, OH, USA, 1995. 501 p. 31. GOST 5657–69. Steel. Method for the determination of hardenability. Introduced: 01.01.1970. |