Журналы →  Gornyi Zhurnal →  2025 →  №8 →  Назад

PHYSICS OF ROCKS AND PROCESSES
Название Geomechanical risk evaluation and control using machine learning
DOI 10.17580/gzh.2025.08.06
Автор Noskov V. A., Morozov K. V., Grishchenkova E. N., Tenison L. O.
Информация об авторе

Scientific Center for Geomechanics and Mining Practice Problems, Empress Catherine II Saint-Petersburg State Mining University, Saint-Petersburg, Russia

V. A. Noskov, Deputy Director of Science and Innovation, Candidate of Economic Sciences, noskov_va@pers.spmi.ru
K. V. Morozov, Head of Laboratory, Candidate of Engineering Sciences
E. N. Grishchenkova, Senior Researcher, Candidate of Engineering Sciences

 

Design and Analysis Department, Uralkali, Berezniki, Russia
L. O. Tenison, Head, Candidate of Engineering Sciences

Реферат

Risk evaluation and control is one of the top priorities. There is yet no uniform understanding and general notion of a risk. Mining practices undergo impact of various risks: economic, financial, social, ecological, technological etc. The authors propose their own notion of a geomechanical risk. The article describes a geomechanical risk evaluation and control procedure. The procedure involves machine learning algorithms for the prediction of critical parameters (horizontal displacements) as estimates of stability of load-bearing components (pillars) in a salt mining system. In the capacity of a tool of pillar safety planning and decision-making, the authors propose a model—‘heat map’—built using adaptation of machine learning results and convergence threshold parameters.

Ключевые слова Risk management, geomechanics, economic effects, decision making, geomechanical risk control, machine learning, probability, deformation
Библиографический список

1. Chetyrkina N. Yu., Vasileva Ya. A. The genesis and relationship between the concepts of risk and uncertainty. Peterburgskiy ekonomicheskiy zhurnal. 2020. No. 2. pp. 37–45.
2. lthaus C. E. A disciplinary perspective on the epistemological status of risk. Risk Analysis. 2005. Vol. 25, No. 3. pp. 567–588.
3. Bernstein P. L. Against the Gods: The Remarkable Story of Risk. New York : John Wiley & Sons, 1996. 296 p.
4. GOST R 58771–2019. Risk Management. Risk Assessment Technologies. Moscow : Standartinform, 2020. 90 p.
5. Aven T. A unified framework for risk and vulnerability analysis covering both safety and security. Reliability Engineering and System Safety. 2006. Vol. 92, No. 6. pp. 745–754.
6. Kaplan S., Garrick B. J. On the quantitative definition of risk. Risk Analysis. 1981. Vol. 1, No. 1. pp. 11–27.
7. Aven T. Practical implications of the new risk perspectives. Reliability Engineering and System Safety. 2013. Vol. 115. pp. 136–145.
8. Kulikova E. Yu., Polyankin A. G., Potokina A. M. Specifics of geotechnical risk control in the design of underground structures. Journal of Mining Institute. 2023. Vol. 264. pp. 895–905.
9. Simser B. P. Rockburst management in Canadian hard rock mines. Journal of Rock Mechanics and Geotechnical Engineering. 2019. Vol. 11, Iss. 5. pp. 1036–1043.
10. Rudakov M., Gridina E., Kretschmann J. Risk-based thinking as a basis for efficient occupational safety management in the mining industry. Sustainability. 2021. Vol. 13, Iss. 2. ID 470.
11. Sidorov D. V., Ponomarenko T. V. Application of digital geomechanical twins to predict and assess risks of reserve loss in ore mining projects. Gornaya Promyshlennost. 2022. No. 3. pp. 112–117.
12. Kiselev V. A., Gordeev V. A., Guseva N. V. Forecast of the rock bursts frequency at the JSC “Apatit” mines. Marksheyderskiy vestnik. 2024. No. 2. pp. 17–25.
13. Gospodarikov A. P., Revin I. E., Morozov K. V. Composite model of seismic monitoring data analysis during mining operations on the example of the Kukisvumchorrskoye deposit of AO Apatit. Journal of Mining Institute. 2023. Vol. 262. pp. 571–580.
14. Shabarov A. N., Noskov V. A., Pavlovich A. A., Cherepov A. A. Concept of geomechanical risk in open pit mining. Gornyi Zhurnal. 2022. No. 9. pp. 22–28.
15. Kutepov Yu. Yu., Karasev M. A. Analysis and prediction of phosphogypsum compaction in dumps for dump capacity substantiation. Gornyi Zhurnal. 2023. No. 5. pp. 61–67.
16. Gospodarikov A. P., Kirkin A. P., Kovalevskiy V. N. On some local rock burst prevention methods. Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle. 2021. No. 2. pp. 77–93.
17. Matrenin P. V., Stepanova A. I. Enhancing the interpretability of electricity consumption forecasting models for mining enterprises using Shapley Additive Explanations. Journal of Mining Institute. 2025. Vol. 271. pp. 154–167.
18. Klebanov A. F., Bondarenko A. V., Zhukovsky Yu. L., Klebanov D. A. Establishing remote control centers of a mining operation: Strategic prerequisites and implementation stages. Gornaya Promyshlennost. 2024. No. 4. pp. 174–183.
19. Zubov V. P., Sokol D. G. Technologies of intensive development of potash seams by longwall faces at great depths: Current problems, areas of improvement. Journal of Mining Institute. 2023. Vol. 264. pp. 874–885.
20. Belyakov N. A., Emelyanov I. A. Inclusion of rock mass fracturing in determination of in situ stress state by overcoring using multi-component displacement sensor. MIAB. 2024. No. 12-1. pp. 145–164.
21. Instructions on Mine Flooding Protection and Preservation of Undermined Objects at the Upper Kama Potassium–Magnesium Salt Deposit. Perm; Berezniki, 2014. 130 p.
22. Małachowski K. The biggest surface mining disaster in Poland and its economic results. European Journal of Service Management. 2018. Vol. 28/2. pp. 247–255.
23. Baturin E. N., Menshikova E. A., Blinov S. M., Naumov D. Yu., Belkin P. A. Problems of the development of the world largest potash deposits. Sovremennye problemy nauki i obrazovaniya. 2012. No. 6.
24. Baryakh A. A., Evseev A. V. Closure of potash and salt mines: Review and analysis of the problem. MIAB. 2019. No. 9. pp. 5–29.
25. Belikov A. A., Belyakov N. A. Review of large accidents in underground salt mining. Urgent Issues of Science and Practice: IX International Conference Proceedings. Ufa : NITs Vestnik nauki, 2022. pp. 358–365.
26. Laptev B. V. Historiography of accidents in salt mining. Bezopasnost Truda v Promyshlennosti. 2011. No. 12. pp. 41–46.
27. Protosenya A. G., Alekseev A. V., Verbilo P. E. Prediction of the stress–strain state and stability of the front of tunnel face at the intersection of disturbed zones of the soil mass. Journal of Mining Institute. 2022. Vol. 254. pp. 252–260.
28. Shabarov A. N., Kuranov A. D. Basic development trends in mining sector in complicating geotechnical conditions. Gornyi Zhurnal. 2023. No. 5. pp. 5–10.
29. Protosenya A. G., Katerov A. M. Substantiation of rheological model parameters for salt rock mass. MIAB. 2023. No. 3. pp. 16–28.
30. Evseev A. V. Scheduled instrumental control of load-bearing components of mining systems at the Upper Kama Potassium–Magnesium Salt Deposit. Gornoe ekho. 2020. No. 4(81). pp. 36–39.
31. Lomakin I. S., Tsayukov A. A., Evseev A. V. Physical and mathematical modelling of rib pillar deformation and failure processes. Vestnik Permskogo federalnogo issledovatelskogo tsentra. 2021. No. 1. pp. 47–53.
32. Pankov I. L., Anikin V. V., Beltyukov N. L., Evseev A. V., Kuzminykh V. S. et al. Studying the deformation and failure of salt rocks for geomechanical assessing the stability of elements of the system for the mining at potash deposits. Vestnik Permskogo federalnogo issledovatelskogo tsentra. 2022. No. 3. pp. 14–24.
33. Rybak Ya., Khayrutdinov M. M., Kuziev D. A., Kongar-Syuryun Ch. B., Babyr N. V. Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing. Journal of Mining Institute. 2022. Vol. 253. pp. 61–70.
34. Odintsov E. E., Gusev V. N. Application of the method of massif condition forecasting in complex mining and geological conditions. Marksheyderiya i nedropolzovanie. 2024. No. 3(131). pp. 55–60.
35. Bruce P., Bruce A., Gedeck P. Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python. 2nd ed. Beijing : O’Reilly Media, 2020. 360 p.
36. Public Course on Machine Learning. Topic 5. Compositions: Bagging, Random Forest. 2017. Available at: https://habr.com/ru/companies/ods/articles/324402/ (accessed: 15.05.2025).
37. Algorithms AdaBoost (SAMME & R2). Principle of Operation and Implementation Starting from Scratch in Python. 2024. Available at: https://habr.com/ru/articles/800499/ (accessed: 15.05.2025).

Language of full-text русский
Полный текст статьи Получить
Назад