Журналы →  Eurasian mining →  2025 →  №1 →  Назад

INDUSTRY SAFETY AND LABOUR PROTECTION
Название Influence of alkaline treatment on physicochemical properties of sulphide dust
DOI 10.17580/em.2025.01.21
Автор Apakashev R. A., Valiev N. G., Khazin M. L.
Информация об авторе

Ural State Mining University, Yekaterinburg, Russia

Apakashev R. A., Professor, Doctor of Chemical Sciences
Valiev N. G., Professor, Head of Mining Department, Doctor of Engineering Sciences, niyaz.valiev@m.ursmu.ru
Khazin M. L., Professor, Doctor of Engineering Sciences

Реферат

The study of the alkaline medium effect on the physicochemical parameters of copper–pyrite ore dust (granulometric, chemical and phase compositions) is aimed at assessment of opportunities for the efficiency enhancement in dust suppression during drilling and blasting by means of spraying mine roadways with alkaline solutions. The grain size analysis of the test dust samples shows that alkaline treatment has no noticeable influence on the degree of dust dispersion. The alkaline medium effect on the chemical composition of the test dust shows up as the increase in the contents of silicon, iron and oxygen present in the dust in the greatest amounts. The change in the chemical composition of the dust treated with the alkaline solution correlates with the change in the phase composition of the dust. The mass fraction of quartz decreases, which leads to the re-distribution of the mass fractions of other components, including the increased content of pyrite. Thus, spraying of mine roadways can increase the concentration of pyrite in the accumulated dust, which implies an increase in the dust explosion risk. In this regard, alkaline solutions are not a special preventive means capable to ensure enhanced efficiency of explosible dust suppression as compared with water spraying.

Ключевые слова Сopper–pyrite ore, sulphide dust, explosibility, dust suppression, mine roadway spraying, grain size composition, chemical composition, phase composition, alkaline solution
Библиографический список

1. Teterev N. A., Ermolayev A. I., Kuznetsov A. M. Effect of physicochemical properties on explosibility of sulphide dust. MIAB. 2018. No. 12. Special Issue 63. pp. 3–11.
2. Pinaev A. V., Pinaev P. A. On the explosiveness of suspensions of sulfide ore dust in air in shock waves. Journal of Physics Conference Series. 2019. Vol. 1382. ID 012095.
3. Rao Y., Tian Ch., Wei Xu et al. Explosion pressure and minimum explosible concentration properties of metal sulfide ore dust clouds. Journal of Chemistry. 2020. ID 7980403.
4. Khudhur D. A., Abdullah T. A. T., Ali M. W. Mechanisms, severity and ignitability factors, explosibility testing method, explosion severity characteristics, and damage control for dust explosion: A concise review. Journal of Physics: Conference Series. 2021. Vol. 1892. ID 012023.
5. Li Z., Hu P., Xu Y. Study on sulfide ore dust dispersion and dust reduction measures based on simulation. Minerals. 2024. Vol. 14, Iss. 5. ID 523.
6. Mitishova N. A. Development of technological recommendations for ensuring fire and explosion safety during underground development of pyrite ore deposits. Izvestija Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2021. No. 4. pp. 165–177.
7. Rylnikova M. V., Mitishova N. А. Research technique for explosion hazard of lowgrade sulphide ore in underground mines. MIAB. 2019. No. 9. pp. 41–51.
8. Fan J. Q., Bai J. P., Zhao Y. S. et al. Experimental study of factors influencing explosion characteristics of sulfur dust. China Safety Science Journal. 2018. Vol. 28, No. 2. pp. 81–86.
9. Ufatova Z. G. The current state of the problem of predicting spontaneous combustion and explosiveness of sulfide ores and host rocks at a depth of more than 1500 m. Mining Industry Journal. 2021. No. 2. pp. 77–80.
10. Strokova V. V., Ishmukhametov A. M., Esina A. Yu. et al. Water-based dust suppressing compositions: Analysis of the state and prospects of development. Vestnik technologicheskogo universiteta. 2021. Vol. 24, No. 12. pp. 5–38.
11. Bałaga D., Siegmund M., Kalita M. et al. Selection of operational parameters for a smart spraying system to control airborne PM10 and PM2.5 dusts in underground coal mines. Process Safety and Environmental Protection. 2021. Vol. 148. pp. 482–494.
12. Zhang X., Han Z., Wang C., Yu Y., Wu B. Combustion-explosion suppression and environmental protection of typical sulfur-containing hazardous chemicals. RSC Advances. 2024. Vol. 14, Iss. 40. pp. 29072–29082.
13. Guo H., Gao Zh. X., Fu Ch. Y. et al. Experimental study on the feasibility of reducing coal dust by alkaline solution. Bulgarian Chemical Communications. 2018. Vol. 50, No. 1. pp. 171–175.
14. Drizhd N. A., Kamarov R. K., Isabek T. K., Portnov V. S. Physicochemical effects exerted on sulfur-bearing gases in underground mining. Karaganda : Izdatelstvo Karagandinskogo gosudarstvennogo technicheskogo universiteta, 2013. 262 p.
15. Wang M., Li R., Li Y. et al. Clinical statistics analysis on the characteristics of pneumoconiosis of Chinese miner population. Journel of thoracic Disease. 2016. Vol. 8, No. 8. рр. 2203–2211.
16. Wang W., Wang Y., Shi G. Optical estimation on pollution level of respirable dust based on infrared transmitting behavior in coalmine fully mechanized working face. Journal of Spectroscopy. 2016. Vol. 2016, No. 11. ID 2626414.
17. Mitishova N. A., Fedotenko V. S., Gorbatova E. A., Aybinder A. G. Geological and structural analysis of pyrrhic ores and rocks in assessing the explosive hazard of sulfide dust. Izvestiya TulGU. 2020. No. 4. pp. 350–363.
18. Ketrov A. A., Yudovskaya M. A., Shelukhina Yu. S., Velivetskaya T. A., Palamarchuk R. S. Sources and evolution of isotopic composition of sulfur in sulphides in the Kharaelakh and Pyasino-Vologochan intrusive rocks, Norilsk ore province. Geologiya rudnih mestorozhdenij. 2022. Vol. 64, No. 6. pp. 57–686.
19. Kouzov P. A. Analysis of Dispersion Composition of Industrial Dusts and Ground Materials: Essentials. Leningrad : Khimiya, 1974. 279 p.
20. Zanaveskin K. L., Maslennikov A. N., Zanaveskina S. M. et al. Leaching SiO2 and Al2O3 impurities from leucoxene (Yaregskoe deposit) by sodium hydroxide solution. Chemical Technology. 2018. Vol. 19, No. 4. pp. 161–172.
21. Lebedev A. L., Kosorukov V. L. Gypsum solubility in water at 25°C. Geochemistry International. 2017. Vol. 55, No. 2. pp. 205–210.

Полный текст статьи Influence of alkaline treatment on physicochemical properties of sulphide dust
Назад