Журналы →  Цветные металлы →  2025 →  №7 →  Назад

Легкие металлы, углеродные материалы
Название Влияние сульфат-аниона на скорость разложения щелочных алюминатных растворов
DOI 10.17580/tsm.2025.07.06
Автор Литвинова Т. Е., Васильев В. В., Тулешов Н. В.
Информация об авторе

Санкт-Петербургский горный уни верситет императрицы Екатерины II, Санкт-Петербург, Россия

Т. Е. Литвинова, профессор кафедры общей и физической химии, докт. техн. наук, профессор, эл. почта: litwinowa@spmi.ru
В. В. Васильев, доцент кафедры металлургии, канд. техн. наук, доцент, эл. почта: Vasilev_VV@pers.spmi.ru
Н. В. Тулешов, аспирант кафедры общей и физической химии, эл. почта: nickolai.tuleshov@yandex.ru

Реферат

Исследование посвящено изучению влияния растворенной серы в форме сульфата натрия на осаждение гидроксида алюминия из щелочных алюминатных растворов в присутствии затравочного материала. Эксперименты выполнены с модельными пульпами при варьировании содержания серы в пересчете на [SO42–] от 0 до 18 г/л и следующих исходных параметрах: [Al2O3] = 30,15 г/л; Lk = 1,67; затравочное k отношение = 1,25. Установлено, что на фоне низкого затравочного отношения присутствие сульфат-аниона значительно стабилизирует раствор, снижая скорость разложения пропорционально содержанию примеси. Для дальнейшего анализа результатов экспериментов была применена математическая модель роста частиц исходного гидроксида алюминия, основанная на гипотезе о равномерном осаждении растворенных алюминат-ионов на поверхности затравки. Микроструктурные исследования полученного осадка подтвердили гипотезу о преимущественно сферической форме растущих частиц гидрата и отразили равномерный рост осадка в выбранных условиях эксперимента: высокого пересыщения модельных пульп по растворенному алюминию относительно равновесных значений, рассчитанных по Розенбергу – Хили, а также пониженного затравочного отношения. Подтверждена сходимость измеренных и расчетных значений удельных поверхностей осадков после окончания экспериментов. Согласно результатам расчетов, в условиях эксперимента начальная эффективная скорость процесса разложения линейно снижается пропорционально присутствию сульфата в диапазоне от 0 до 18 г/л, а дальнейшая убыль эффективной скорости от времени не зависит от содержания примеси. Работа вносит вклад в понимание влияния сульфатов на скорость осаждения гидроксида алюминия, предложены зависимости для описания процесса.

Ключевые слова Гидроксид алюминия, алюминатный раствор, кинетика разложения, осадок, пересыщение, математическое моделирование
Библиографический список

1. Pyagay I. N., Svakhina Y. A., Titova M. E. et al. Effect of hydrogel molar composition on the synthesis of LTA-type zeolites in the utiliza tion of technogenic silica gel // Silicon. 2024. Vol. 16, Iss. 11. P. 4811–4819.
2. Svakhina Y. A., Titova M. E., Pyagay I. N. Products of apatitenepheline ore processing in the synthesis of low-modulus zeolites // Indonesian Journal of Science and Technology. 2023. Vol. 1, Iss. 8. P. 49–64.
3. Sizyakov V. M., Brichkin V. N., Kurtenkov R. V., Maksimova R. I. Synthesis, properties and applications of complex calcium aluminates and hydroaluminates // Non-ferrous Мetals. 2025. № 1. Р. 10–17.
4. Healy S. J. Bayer process impurities and their management // Springer Series in Materials Science. Springer Science and Business Media Deutschland GmbH. 2022. Vol. 320. Р. 375–426.
5. Александрова Т. Н., Афанасова А. В., Абурова В. А. «Невидимые» благородные металлы в углеродистых породах и продуктах обогащения: возможность выявления и укрупнения // Горные науки и технологии. 2024. Т. 9, № 3. С. 231–242.
6. Wellington M., Valcin F. Impact of bayer process liquor impurities on causticization // Industrial and Engineering Chemistry Research. 2007. Vol. 46, Iss. 15. Р. 5094–5099.
7. Li X. B., Li C. Y., Peng Z. H. et al. Interaction of sulfur with iron compounds in sodium aluminate solutions // Transactions of Nonferrous Metals Society of China (English Edition). 2015. Vol. 25, Iss. 2. P. 608–614.
8. Zhou X.-j., Tan F., Chen Y.-li et al. Thermodynamic analysis of Na – S – Fe – H2O system for Bayer process // Transactions of Nonferrous Metals Society of China (English Edition). 2022. Vol. 32, Iss. 6. P. 2046–2060.
9. Лайнер А. И., Еремин Н. И., Певзнер И. З. Производство глинозема. – М. : Металлургия, 1978. – 344 с.
10. Zhou X., Chen Y., Yin J. et al. Study on Bayer digestion behaviour of low grade bauxite with high sulphur // International Journal of Microstructure and Materials Properties. 2018. Vol. 13, Iss. 3/4. 173.
11. Liu Z., Ma W., Yan H. et al. Removal of sulfur by adding zinc during the digestion process of high-sulfur bauxite // Scientific Reports. 2017. Vol. 7, Iss. 1. 17181.
12. Zhou X., Yin J., Chen Y. et al. Simultaneous removal of sulfur and iron by the seed precipitation of digestion solution for high-sulfur bauxite // Hydrometallurgy. 2018. Vol. 181. P. 7–15.
13. Liu Z., Li D., Ma W. et al. Sulfur removal by adding aluminum in the bayer process of high-sulfur bauxite // Minerals Engineering. 2018. Vol. 119. P. 76–81.
14. Chen Q., Hu H.-P., Lv B. et al. Effects of four aromatic carboxylic acids as inhibitors on the seeded precipitation ratios of sodium aluminate solutions and the agglomeration efficiency of gibbsite // Ligth Metals. 2009. P. 189–192.
15. Watling H., Loh J., Gatter H. Gibbsite crystallization inhibition 1. Effects of sodium gluconate on nucleation, agglomeration and growth // Hydrometallurgy. 2000. Vol. 55. P. 275–288.
16. Cheremisina O. V., Gorbacheva A. A., Balandinsky D. A. et al. Synergistic effect of a mixture of ethoxyphosphoric esters and sodium oleate in aqueous solutions // Colloids and Surfaces A:
Physicochemical and Engineering Aspects. 2024. P. 303–314.
17. Wijayaratne H., Hyland M., McIntoshG. et al. Balancing sodium impurities in alumina for improved properties // Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 2018. Vol. 49, Iss. 5. P. 2809–2820.
18. Zhang B., Pan X., Yu H. et al. Effect of organic impurity on seed precipitation in sodium aluminate solution // Ligth Metals. 2018. P. 41–47.
19. Wu Z., Yin Z., Chen Q., Liang C. Effect of silicon-containing impurity on precipitation of sodium aluminate solution and interaction mechanism // The Chinese Journal of Nonferrous Metals. 2008. Vol. 18, Iss. 12. P. 2275–2283.
20. Zhang Y., Zheng S., Zhang Y. et al. Additives effects on crystallization and morphology in a novel caustic aluminate solution decomposition process // Frontiers of Chemical Engineering in China. 2009. Vol. 3. P. 88–92.
21. Lopez Ortiz J. I., Quiroga E., Narambuena C. F., Ramirez-Pastor A. J. Crystal growth from aqueous solution in the presence of structured impurities // Crystal Growth and Design. 2019. Vol. 19, Iss. 1. P. 134–140.
22. Shtukenberg A. G., Ward M. D., Kahr B. Crystal growth inhibition by impurity stoppers, now // Journal of Crystal Growth. 2022. Vol. 597. 126839.
23. Qin Wang D., Li X.-B., Zhou Q., Liu G. Effect of sodium carbonate and sodium sulfate on structure of sodium aluminate solution // Journal of Central South University (Science and Technology). 2012.
Vol. 43, Iss. 12. P. 4600–4604.
24. Bird R. D., Vance H. R., Fuhrman C., Plant S. The effect of four common bayer liquor impurities // Ligth Metals. 1983. P. 132–140.
25. Golubev V., Litvinova T. Dynamic simulation of industrial-scale gibbsite crystallization circuit // Journal of Mining Institute. 2021. Vol. 247. P. 88–101.
26. Syrkov A., Yachmenova L. Features of obtaining metallurgical products in the solid-state hydride synthesis conditions // Journal of Mining Institute. 2022. Vol. 256. P. 651–662.
27. Бричкин В. Н., Фёдоров А. Т. Термодинамическое моделирование ионных равновесий при участии гиббсита в системе Na2O – Al2O3 // Цветные металлы. 2022. № 3. С. 74–81.
28. Zhao S., Yang Y., Bi S., Xie Y. Influence of additives on physicochemical properties of sodium aluminate solution using seed precipitation in the Bayer process // The European Journal of Mineral Processing and Environmental Protection. 2005. Vol. 5, Iss. 2. P. 197–201.
29. Misra C., White E. T. Crystallisation of bayer aluminium trihydroxide // Journal of Crystal Growth. 1971. Vol. 8, Iss. 2. P. 172–178.
30. Khalifa A., Bazhin V., Ustinova Y., Shalabi M. Study of the kinetics of the process of producing pellets from red mud in a hydrogen flow // Journal of Mining Institute. 2022. Vol. 254. P. 261–270.

31. Rosenberg S. P., Healy S. J. Thermodynamic Model for Gibbsite Solubility in Bayer Liquors // Fourth International Alumina Quality Workshop. – Darwin, Australia, 1996. P. 301–310.
32. Wang J. W., Lu C. Y., Jia Y. Z., Lv C. Z. Effect of Na2SO4 on the decom position rate and product size in seed precipitation process // Advan ced Materials Research. 2013. Vol. 734–737. P. 1522–1525.

Language of full-text русский
Полный текст статьи Получить
Назад