| ArticleName |
Production of magnesium chloride and metallic magnesium from serpentinites of the Kutchinskoye deposit, Uzbekistan |
| ArticleAuthorData |
Institute of General and Inorganic Chemistry of the Academy of Sciences of Republic of Uzbekistan (Tashkent, Uzbekistan)
Pirimov T. Zh., PhD in Engineering Sciences, Senior Researcher, tuychi_pirimov1978@mail.ru Namazov Sh. S., Head of Laboratory, Doctor of Engineering Sciences, Professor, igic@ramler.ru Usanbayev N. Kh., Deputy Director for Science, Doctor of Engineering Sciences, najim70@ramler.ru
Navoi State University of Mines and Technologies (Navoi, Uzbekistan) Temirov U. Sh., Professor, Doctor of Engineering Sciences, Associate Professor, temirov-2012@mail.ru |
| Abstract |
Uzbekistan currently lacks domestic production of metallic magnesium and its compounds, which are widely used across various industries. Serpentinites from the Kutchinskoye and Arvatinskoye deposits are promising local sources of magnesium. This study examines the extraction of magnesium chloride and metallic magnesium through hydrochloric acid decomposition of Kutchinskoye deposit serpentinites, followed by silica separation and neutralization of the filtrate with ammonia to pH 8.5 for impurity removal and magnesium chloride solution recovery. Optimal conditions for magnesium chloride synthesis and dehydration were established, including artificial carnallite formation by adding potassium chloride. Acid treatment increased magnesium chloride content to 8.83 % and silica content to 78.53 %, indicating potential for silicate material applications. Electrolytic production of metallic magnesium was performed in an argon atmosphere, yielding 54.2 g of magnesium from 600 g of carnallite, with a recovery rate of 92.76–97.44 %. Additionally, ballast salts in the filtrate were minimized, achieving a magnesium chloride solution concentration of 71.38 %. These results demonstrate the feasibility of producing metallic magnesium from Kutchinskoye deposit serpentinites. Industrial implementation of this process can enhance raw material utilization, expand product ranges, and improve overall profitability. |
| References |
1. Gapchich A. O., Shcherban′ P. S., Letunovskaya O. N., Novikov I. S. Production of metallic magnesium based on polymineral ores of the Kaliningrad-Gdan′sk salt basin. Izvestiya Uralskogo Gosudarstvennogo Gornogo Universiteta. 2023. No. 2. pp. 107–120. 2. Sheha E., Farrag M., Fan Sh., et al. A simple Cl–-free electrolyte based on magnesium nitrate for magnesium–sulfur battery applications. ACS Applied Energy Materials. 2022. Vol. 5, Iss. 2. pp. 2260–2269. 3. Osadchenko I. M., Lyabin M. P., Romanovskova A. D. Magnesium oxide: Properties, methods of preparation and application (analytical review). Prirodnye Sistemy i Resursy. 2018. Vol. 8, No. 3. pp. 5–14. 4. Zhang W., Li J. The intrinsic mechanical properties of hydromagnesite, Mg5(CO3)4(OH)2·4H2O, a key phase of reactive MgO carbonate cement. Cement and Concrete Research. 2024. Vol. 177. DOI: 10.1016/j.cemconres.2023.107410 5. Khamidov R. A., Panchenkova L. A. Resources of magnesia refractory raw materials of Uzbekistan. Geologiya va Mineral Resurslar. 2000. No. 3. pp. 25–27. 6. Karzhauv T. K., Petrov N. P. Chizh L. M. Magnesites of salt deposits of Western Uzbekistan. Tashkent: Fan, 1978. 64 p. 7. Shiroyan D. S., Gromova I. V., Elzhirkaev R. A. Study opportunities for processing serpentine-magnesite ore deposit Khalilovskiy over magnesium sulphat. Uspekhi v Khimii i Khimicheskoy Tekhnologii. 2014. Vol. 28, No. 5. pp. 122–125. 8. Masalimov А. V., Smirnov A. N., Orekhova N. N., Grishin I. A. The raw material base for the discovery of magnesium oxide production promising sources in the beneficiation processes. Vestnik Zabaykalskogo Gosudarstvennogo Universiteta. 2021. Vol. 27, No. 3. pp. 16–25. 9. Perederin Yu.V., Usoltseva I. O., Krasnoshchekova D. V. Basic technologies for obtaining magnesium oxide from serpentinite. Polzunovskiy Vestnik. 2019. No. 2. pp. 123–127. 10. Saharunyan S. A., Arustamyan A. G., Agamyan E. S., Nazaryan E. M., Saharunyan A. S. Investigation of serpentinite complex processing. Trudy Kolskogo Nauchnogo Tsentra RAN. 2018. Vol. 9, No. 2-1. pp. 187–191. 11. Du A., Zhang Zh., Qu H., et al. An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery. Energy & Environmental Science. 2017. Vol. 10, Iss. 12. pp. 2616– 2625. 12. Zhao-Karger Z., Liu R., Dai W., et al. Toward highly reversible magnesium–sulfur batteries with efficient and practical Mg[B(hfip)4]2 electrolyte. ACS Energy Letters. 2018. Vol. 3, Iss. 8. pp. 2005–2013. 13. Petrov A. A., Speransky K. A. Magnesium alloys: prospective industries of application, advantages and disadvantages (review). Part 2. Mechanism of deformation and anisotropy of mechanical properties of magnesium alloys. Trudy VIAM. 2021. No. 11. pp. 12–24. 14. Kiselevsky M. V., Anisimova N. Yu., Polotsky B. E., et al. Biodegradable magnesium alloys as promising materials for medical applications (review). Sovremennye Tekhnologii v Meditsine. 2019. Vol. 11, No. 3. pp. 146–157. 15. Umirov F. E., Shodikulov Zh. M., Aslonov A. B., Sharipov S. Sh. Material composition of talc-magnesite rocks of the Zinelbulak deposit in Uzbekistan. Obogashchenie Rud. 2023. No. 4. pp. 25–31. 16. Pirimov T. Zh., Namazov Sh. S., Temirov U. Sh., Usanbayev N. Kh. Selective recovery of magnesium compounds from serpentinites of the Arvaten deposit. Obogashchenie Rud. 2023. No. 6. pp. 12–27. 17. Asabaev D. Kh., Badalov F. A., Ergashov A. M. Assessment of mineral resource potential of magnesite rocks and prospects for its rational use in Western Uzbekistan (Southern Tien Shan). Oriental Renaissance: Innovative, Natural and Social Sciences. 2022. Vol. 2, Iss. 11. pp. 259–275. 18. Belousov P. E., Bocharnikova Yu. I., Boeva N. M. Analytical methods for diagnostic of mineral composition in bentonite clay. Vestnik Rossiyskogo Universiteta Druzhby Narodov. Seriya: Inzhenernye Issledovaniya. 2015. No. 4. pp. 94–101. 19. Bessarabov A. M., Zhdanovich O. A. Analytical quality control information system for chemical reagents and highpurity materials. Neorganicheskie Materialy. 2005. Vol. 41, No. 11. pp. 1397–1404. 20. Ahmadjonov A., Alimov U., Pirimov T., et al. Effect of temperature on the kinetics of the process of nitric acid decomposition of Arvaten serpentinite. IOP Conference Series: Earth and Environmental Science. 2023. Vol. 1142. DOI: 10.1088/1755-1315/1142/1/012034 21. Pirimov T., Namazov Sh., Seytnazarov A., et al. Processing of serpentinites of the Arvaten deposit of Uzbekistan with the use of ammonium sulphate. E3S Web of Conferences. 2023. Vol. 402. DOI: 10.1051/e3sconf/202340214034 |