Журналы →  Цветные металлы →  2023 →  №8 →  Назад

К 250-летию Санкт-Петербургского горного университета императрицы Екатерины II и 20-летию Международного симпозиума «Нанофизика и наноматериалы»
Композиционные материалы, многофункциональные покрытия из наноматериалов
Название Особенности формирования цветного ультраплотного многомерного нанобаркода на поверхности изделий из цветных металлов и их сплавов
DOI 10.17580/tsm.2023.08.03
Автор Петкова А. П., Ганзуленко О. Ю.
Информация об авторе

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия:

А. П. Петкова, профессор кафедры материаловедения и технологии художественных изделий, докт. техн. наук, эл. почта: Petkova_AP@pers.spmi.ru
О. Ю. Ганзуленко, доцент кафедры материаловедения и технологии художественных изделий, канд. техн. наук, эл. почта: Ganzulenko_OYu@pers.spmi.ru

Реферат

В целях защиты изделий от подделки, несанкционированного использования информации, подтверждения подлинности объекта, его однозначной идентификации, увеличения в идентифицирующей символике объема (текстовой, графической, аудио-, видеоинформации и др. медиаданных) примерно 5 раз больше и формирования машиночитаемого шаблона изображения этой символики разработан оригинальный способ формирования цветного матричного кода. Предложенный цветной код позволяет преобразовывать известный черно-белый нанобаркод (НБК) в многомерный цветной, размещаемый на двумерной матрице, или увеличивать емкость НБК в несколько раз. Результатом применения многомерных цветных матричных кодов является многократное увеличение объема данных, содержащихся в цветном коде, путем размещения всех сформированных слоев двоично-кодированных данных на графической двумерной матрице. Возможно создание кодов в цифровом виде, а также на различных носителях путем печати или лазерной маркировки на металлической поверхности. Определение эталонных цветных ячеек гарантирует считывание и декодирование кода при различиях технических характеристик печатающих и сканирующих устройств. Полученные цветовые палитры и базы данных технологических режимов лазерной маркировки титановых, медных и алюминиевых сплавов обеспечивают воспроизводимость основных цветовых оттенков для всех перечисленных материалов. Использование в цветном матричном коде четырех или восьми цветов вместо только черного и белого в двумерном позволяет увеличить емкость кода до двух или трех бит информации в зависимости от числа цветовых слоев. Оперируя четырьмя или восемью устойчивыми цветовыми оттенками, включая цвет фона, можно формировать двух- и трехслойные цветные матричные коды на поверхности каждого из перечисленных материалов.

В работе аквное участие принимала канд. техн. наук Е. В. Ларионова, которой были сформулированы принципы 3-мерного цветного НБК.

Ключевые слова Лазерная маркировка, штрихкод, нанобаркод, цветной матричный код, защита продукции от контрафакта
Библиографический список

1. ISO/IEC 18004. Information technology. Automatic identification and data capture techniques QR Code – Bar code symbology. First edition 2000-06-15. 114 р.
2. Carroll O., Tanguy Y., Houlihan J., Huyet G. Dynamics of a self-pulsing laser with delay. Proceedings of SPIE. The International Society for Optical Engineering. 2004. Vol. 77. pp. 628–635.
3. Valiulin A., Gornyi S., Grechko Yu., Patrov M., Yudin K. et al. Laser marking of materials. Photonics Russia. 2007. No. 3. pp. 16–22.
4. Odintsova G., Andreeva Y., Salminen A., Roozbahani H., Van Cuong L. et al. Investigation of production related impact on the optical properties of color laser marking. Journal of Materials Processing Technology. 2019. Vol. 274. p. 116263. DOI: 10.1016/j/jmatprotec.2019.116263
5. Pryakhin E. I. Nanobarcode as a universal two-dimensional ID offering new opportunities. Journal of Mining Institute. 2015. Vol. 215. pp. 97–100.
6. Pryakhin E. I., Larionova E. V., Zakharenko E. A. Nanobarcode as a multifunctional product identification and protection system. Photonics Russia. 2014. Vol. 48, No. 6. pp. 12–19.
7. Pryakhin E. I., Larionova E. V., Zakharenko E. A. Method of digital information in the form of ultra-compressed nano bar code encoding and decoding (options). Patent RF, No. 2656734. Applied: 27.12.2013. Published: 06.06.2018. Bulletin No. 16.
8. Petkova A. P., Ganzulenko O. Yu. Laser marking of non-ferrous metal and alloy products using ultradense barcodes: process features. Tsvetnye Metally. 2022. No. 7. pp. 92–97.
9. Gornyi S., Veyko V., Odintsova G., Loginov A., Karlagina Yu. et al. Colour laser marking of metal surface. Photonics Russia. 2013. Vol. 42, No. 6. pp. 34–45.
10. Veyko V. P., Gornyi S. G., Odintsova G. V., Patrov M. I., Yudin K. V. Multi-colour images created on metal surface during its laser oxidation. Journal of Instrument Engineering. 2011. Vol. 54, No. 2. pp. 47–52.
11. Konchus D. A., Pryakhin E. I., Sivenkov A. V. Structural variations on the surface of metallic products at laser marking. CIS Iron and Steel Review. 2021. Vol. 22. pp. 96–101.
12. Konchus D., Salpagarov E., Sivenkov A. Temperature influence on readability of the QR-code on titanium alloy. Key Engineering Materials. 2022. No. 909. pp. 54–59. DOI: 10.4028/p-4hhoi9
13. Pritotskiy E. M., Pritotskaya A. P., Burtseva A. A., Pankova M. A. et al. Experimental res earch on chromaticity formation on metals surface by laser radiation. Scientific and Technical Journal of Informat ion Technologies, Mechanics and Optics. 2018. Vol. 18, No. 4. pp. 581–587.
14. Pryakhin E. I., Troshina E. Yu. Degradation induced by thermal and chemical impacts on matrix codes installed on brass and aluminium alloy parts by laser. Tsvetnye Metally. 2022. No. 7. pp. 87–91.
15. Veiko V., Karlagina Y. Y., Moskvin M., Mikhailovskii V. Y., Odintsova G. et al. Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses. Optics and Lasers in Engineering. 2017. Vol. 96. pp. 63–67.
16. Pryakhin E. I., Larionova E. V., Zakharenko E. A. Creation and testing of hardware and software package for applying information fields to product surface. Journal of Mining Institute. 2014. Vol. 209. pp. 234–238.
17. Rasskazchikov N. G., Polyakova A. A. A study of the laser marking process and its optimization. Russian Internet Journal of Industrial Engineering. 2019. Vol. 7, No. 1. pp. 9–13. DOI: 10.24892/RIJIE/20190102
18. Odintsova G. V. Understanding and developing the process of colour laser marking of metals by local oxidation: Extended abstract of PhD dissertation. St Petersburg : Sankt-Peterburgskiy natsionalnyi issledovatelskiy universitet informatsionnykh tekhnologiy, mekhaniki i optiki, 2014. 20 p.
19. Ageev E. I., Veiko V. P., Vlasova E. A., Karlagina Y. Y., Krivonosov A. S. et al. Controlled nanostructures formation on stainless steel by short laser pulses for products protection against falsification. Optics Express. 2018. Vol. 26, Iss. 2. pp. 2117–2122.
20. Morozova I. G., Naumova M. G., Zarapin A. Yu., Borisov P. V. Marking a copper alloy by changing its surface topology under the impact of laser thermal processing. Metallurg. 2018. No. 5. pp. 56–60.
21. Xiaolei M., Xihan N., Jingnan Z., Pranav S., Yan Z. Effect of nanosecond pulsed laser parameters on the color marking of 304 stainless steel. Optics and Laser Technology. 2020. Vol. 126. p. 106104. DOI: 10.1016/j.optlastec.2020.106104
22. Gorny S. G., Zakharenko E. A., Klassen N., Kolobov Y. R., Ligachev A. et al. Laser formation and influence of laser radiation on basic characteristics of barcodes. Inorganic Materials: Applied Research. 2022. Vol. 13. pp. 879–886.

23. Antonov D. N., Burtsev A. A., Butkovskiy O. Ya. Metal surface coloration under the impact of pulsed laser radiation. Technical Physics. 2014. Vol. 84, No. 10. pp. 83–86.
24. Amiaga John V., Ramos-Velazquez A. R., Gorny S. G., Vologzhanina S. A., Michtchenko A. Groove formation on metal substrates by nanosecond laser removal of melted material. Metals (MDPI). 2021. No. 11. pp. 1–14. DOI: 10.3390/met11122026
25. Veiko V. P., Odintsova G. V., Gazizova M. Y., Karlagina Y. Y., Manokhin S. S. et al. The influence of laser micro- and nanostructuring on the wear resistance of Grade-2 titanium surface. Laser Physics. 2018. Vol. 28, No. 8. p. 086002.
26. Konchus D. A., Sivenkov A. V. A surface structure formation of stainless steel using a laser. Materials Science Forum. 2021. No. 1022. pp. 112–118. DOI: 10.4028/www.scientific.net/MSF.1022.112
27. Chang C.-L., Cheng C.-W., Chen J.-K. Femtosecond laser-induced periodic surface structures of copper: Experimental and modeling comparison. Applied Surface Science. 2019. Vol. 469. pp. 904–910. DOI: 10.1016/j.apsusc.2018.11.059
28. Alekseev V. I., Barakhtin B. K., Zhukov A. S. Chemical inhomogeneity as a factor of raising the strength of selective laser melted steels. Journal of Mining Institute. 2020. No. 242. pp. 191–196. DOI: 10.31897/pmi.2020.2.191
29. Salpagarov E. M., Belyakov A. A., Sivenkov A. V. Improvement of mechanical properties of the tool using nanocomposite coatings. Materials Science Forum. 2021. No. 1040. pp. 68–74. DOI: 10.4028/www.scientific.net/MSF.1040.68
30. Tomaev V. V., Polischuk V. A., Vartanyan T. A., Mjakin S. V., Leonov N. B. et al. Studies of zinc and zinc oxide nanofilms of different thickness prepared by magnetron sputtering and thermal oxidation. Optics and Spectroscopy. 2021. No. 129. pp. 1033–1037. DOI: 10.1134/S0030400X21070201
31. Amiaga J. V., Gorny S. G., Vologzhanina S. А. Development of a fast method for forming Braille on the surface of steels with IR nanosecond pulsed 50W fiber laser. AIP Conference Proceedings. 2020. Vol. 2285. p. 040003.
32. Amiaga J. V., Gorny S. G., Vologzhanina S. А. Method of convex marking of the surfaces of steel products using a pulsed 50-W infrared fiber laser. Metally. 2020. No. 13. pp. 1513–1517.
33. Stepan ov S. N., Larionova T. A., Stepanov S. S. Understanding the effect of aluminium on the adhesion of stainless steel during flame spraying. Journal of Mining Institute. 2020. No. 245. pp. 591–598. DOI: 10.31897/PMI.2020.5.11
34. Morozova I. G., Naumova M. G, Zarapin A. Y., Borisov P. V. Copper alloy marking by altering its surface topology using laser heat treatment. Metallurgist. 2018. No. 62. pp. 464–469.
35. Olt Yu., Maksarov V. V., Krasnyi V. A. Understanding the wear resistance of mine dump truck engine bearings subjected to fretting corrosion. Journal of Mining Institute. 2019. No. 235. pp. 70–77. DOI: 10.31897/pmi.2019.1.70
36. Gorbatuk S. M., Naumova M. G. Morozova I. G. Color mark formation on a metal surface by a highly concentrated energy source. Metallurgist. 2016. Vol. 60, No. 5. pp. 646–650.
37. CMYK and RGB for printing: What is the difference? Devis printing system. Available at: https://npt.ru/blog/cmyk-i-rgb-dlja-pechati-v-chemraznica (Accessed: 05.07.2023).

Полный текст статьи Особенности формирования цветного ультраплотного многомерного нанобаркода на поверхности изделий из цветных металлов и их сплавов
Назад