Journals →  Chernye Metally →  2022 →  #12 →  Back

Cast Iron Production
ArticleName Ability to reduce iron with additional hydrogen introduced into the blast-furnace natural gas stream
DOI 10.17580/chm.2022.12.03
ArticleAuthor A. S. Kharchenko, M. I. Sibagatullina, D. M. Chukin, V. A. Bigeev

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia:

A. S. Kharchenko, Dr. Eng., Associate Professor, Head of the Dept. of Metallurgy and Chemical Technology (MChT), e-mail:
M. I. Sibagatullina, Postgraduate Dtudent, Dept. of MChT
D. M. Chukin, Cand. Eng., Senior Researcher, Research Sector
V. A. Bigeev, Dr. Eng., Prof., Dept. of MChT


Equations are obtained, calculations are made on them, and graphs of the temperature dependence of the extremely high degree of hydrogen utilization are presented, which characterize the reduction of iron under conditions when H2O moves from the zone of transformation of FeO into Fe to the zone of transformation of Fe3O4 into FeO and further from the zones of development of these two reactions to the zone of transformation Fe2O3 to Fe3O4 with decreasing amount of hydrogen. Under the blast furnace conditions, the limit value for the hydrogen use is 55–57 %. In the course of studies at a blast furnace with a useful volume of 1370 m3 at PJSC MMK, an increase in the ratio of the amounts of hydrogen supplied with natural gas and oxygen supplied with enriched air blast was accompanied by an increase in the degree of hydrogen use from 47.0 to 50.6 % and a decrease in specific coke consumption from 404.0 to 397.4 kg/t of pig iron. The ratio of specific consumption of coke and total hydrogen of natural gas in the form of hydrocarbons decreased from 1.41 to 1.29 kg/m3. In another series, a rational mode was revealed, characterized by an increased reactivity of coke and a reduced consumption of natural gas, the transition to which reduced the specific consumption of coke from 426.4 to 423.3 kg/t of pig iron. Under current conditions at PJSC MMK, a reduction in the specific consumption of coke by 50 kg/t of pig iron is possible with the consumption of additional hydrogen in the amount of 156 m3/t of pig iron by it introducing into the existing pipeline of natural gas.
The article was prepared with the support of the grant of the President of the Russian Federation No. MD-1064.2022.4.

keywords Blast furnace, hydrogen use, coke, natural gas, iron reduction

1. Grigorovich К. V. Metallurgy of the 21st century: challenges and tasks of industry modernization in the Russian Federation. Collection of works. The XVI International Congress of Steelmakers and Metal Producers. Ekaterinburg, 2021.
2. Ershov Yu. L., Shakurov А. G., Parshin V. М., Kolesnikov А. G., Shishov А. Yu. Hydrogen era in domestic metallurgy. Message 1. Stal. 2021. No. 11. pp. 50–55.
3. Roshchin V. Е., Roshchin А. V., Kuznetsov Yu. S., Goikhenberg Yu. N. Technological and materials science aspects of the transition in ferrous metallurgy to carbon-free processes. Chernye Metally. 2021. No. 11. pp. 10–17.
4. Elanskiy D. G. Carbon-free ferrous metallurgy – ways and their costs. Collection of works. The XVI International Congress of Steelmakers and Metal Producers. Ekaterinburg, 2021. pp. 51–56.
5. Nedelin S. V. Prospects for the development of ferrous metallurgy, taking into account environmental restrictions. Collection of works. The XVI International Congress of Steelmakers and Metal Producers. Ekaterinburg, 2021. pp. 38–44.
6. Shevelev L. N. The concept of the development of hydrogen technology in the ferrous metallurgy of Russia. Collection of works. The XVI International Congress of Steelmakers and Metal Producers. Ekaterinburg, 2021. pp. 22–25.
7. Torokhov G. V.,. Travyanov А. Ya., Golubev О. V., Chernousov P. V. Current state and prospects of iron metallurgy. Collection of works. The XVI International Congress of Steelmakers and Metal Producers. Ekaterinburg, 2021. pp. 26–37.
8. Kobel coverifiziert Technologie zur Senkungder СО2 Emissionen von Hochoffen. Stahl und Eisen. 2021. Vol. 141. No. 4. S. 10.
9. Chayka А. L., Lebed V. V., Kornilov B. V., Moskalina А. А. et al. Thermal power analysis of technologies for reducing carbon dioxide emissions and increasing the energy efficiency of blast-furnace production. Stal. 2021. No. 1. pp. 81–84.
10. Dillinger und Saarstahl weihen neue Kokseindussing-sanlage ein. Stahl und Eisen. 2020. Vol. 140, Iss. 9. S. 10.
11. Okosun T., Nielsson S., D’Alessio J., Rlaas M. et al. Investigation of high-rate and pre-heated natural gas injection in the blast furnace. Iron and Steel Technology Conference and Exposition (AISTech 2019), Pittsburg, 6–9 May, 2019. Warrendale (Pa). 2019. pp. 383–398.
12. Heikkila A. M., Koskela A. M., Iljana M. O., Lin Rongshan et аl. Coke gasification in blast furnace shaft conditions with Н2 and Н2О containing atmospheres. Steel Research International. 2021. Vol. 92, Iss. 3. p. 2000456.
13. Chen-chen Lan, Shu-hui Zhang, Xiao-jie Liu, Ran Liu, Qing Lyu. Gasification behaviors of coke in a blast furnace with and without H2. ISIJ International. 2021. Vol. 61. No. 1. pp. 158–166.
14. Shkodin К. К. Effect of hydrogen additives to carbon monoxide on the reduction of agglomerates with different physical structures. Stal. 1963. No. 2. pp. 97–104.
15. Gribkov А. А., Shevelev N. N., Brodov А. А. The implementation of energy-saving technologies in the Russian iron and steel industry is a key factor in the fulfilling of the Paris climate agreements. Metallurg. 2021. No. 2. pp. 4–8.
16. Duarto P., Dorndorf M.. Technological achievements and experience on H2 use for DRI production in Energiron Plats. Stahl und Eisen. 2019. Vol. 139. No. 10. S. 38–43.
17. Duarto P.. Trends in H2-based steelmaking. Steel Times International. 2019. Vol. 43. No. 1. pp. 27–32.
18. Auch an der Saar: Wasserstoff im Hochofen zur CO2 – Mindering. Stahlreport. 2019. Vol. 74. No. 7, 8. S. 10.
19. Ovchinnikov А. М. Modernization of equipment and reconstruction of ferrous metallurgy plants abroad. Chernaya metallurgiya. Byulleten nauchno-technicheskoy i ekonomicheskoy informatsii. 2019. Vol. 75. No. 6. pp. 754–760.
20. Energieflexible Fabriken fur tine erfolgreiche Energiewende. Stahl und Eisen. 2019. Vol. 139. No. 11. S. 6.
21. Tata Steel pruft CO2 – Speicherung in der Nordsee. Stahl und Eisen. 2019. Vol. 139. No. 10. S. 38–43.
22. Thyssenkrupp Steel Europe startet erstmalig Einsatz von Wasserstoff im Hochofen. Stahl und Eisen. 2019. Vol. 139. No. 12. S. 24.
23. Agrawal A. K., Kinzel K. P., Rosner B., Kappes H. et al. The Blast furnace in view of past, current and future CO2 saving technologies. METEC and 4 European Steel Technology and Application Days (ESTAD). Dusseldorf, 25–29 June. Dusseldorf, 2019.
24. Ahmed H., Sideris D., Lennartsson A., Prasad P. N. et al. Effect of H2 – rich carbonaceous materials, ash on physicochemical properties of raceway slag and coke reactivity. METEC and 4 European Steel Technology and Application Days (ESTAD). Dusseldorf, 25–29 June. Dusseldorf, 2019.
25. Dmitriev А. N., Zolotykh М. О., Vitkina G. Yu. Improvement of blast-furnace production using digital technologies within the of Industry 4.0 framework. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2020. Vol. 76. No. 4. pp. 339–345.
26. Spirin N. А., Lavrov V. V., Rybolovlev V. Yu., Shnaider D. А., Krasnobaev N. V., Gurin I. А. Digital transformation of pyrometallurgical technologies: state of the art, scientific issues and development prospects. Izvestiya vuzov. Chernaya metallurgiya. 2021. Vol. 64. No. 8. pp. 588–598.
27. Goldenshtein N. L. Hydrogen in the blast furnace process. Moscow: Metallurgizdat, 1971. 208 p.
28. Babarykin N. N., Kryukov N. М., Novikov V. S., Yushin F. А., Sibagatullin S. К. The use of combined blast in blast furnaces of the Magnitogorsk Iron and Steel Works. Stal. 1976. No. 3. pp. 204–208.
29. Sibagatullin S. К., Terentyev V. L. Limiting degree of the reducing gas use in a blast furnace. Stal. 2000. No. 1. pp. 11–14.
30. Sibagatullin S. К., Kolokoltsev V. М., Bigeev V. А., Borodin А. А. The limiting degree of hydrogen use in the reactions of iron reduction from oxides. Theory and technology of metallurgical production: interregional collection of scientific papers. Magnitogorsk: GOU VPO «MGTU», 2010. Iss. 10. pp. 4–11.
31. Bigeev V. А., Sibagatullin S. К., Kharchenko А. S., Potapova М. V. Determination of hydrogen consumption for solid-phase selective reduction of complex iron ore raw materials in laboratory research. Chernye Metally. 2021. No. 12. pp. 25–30.
32. Sibagatullin S. К., Kharchenko А. S. Identification of a rational sequence of a set of raw material components in a hopper of a tray-type BLT by physical modeling. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2015. No. 3 (51). pp. 28–34.
33. Sibagatullin S. К., Kharchenko А. S., Beginyuk V. А., Selivanov V. N., Chernov V. P. Improvement of the blast-furnace operation by increasing the consumption of natural gas according to gas dynamics in the heat exchange upper stage. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2017. No. 1 (15). pp. 37–44.
34. Ramm А. N. Modern blast process. Moscow: Metallurgiya, 1980. 304 p.
35. Yusfin Yu. S., Pashkov N. F. Iron metallurgy: textbook for universities. Moscow: IKTs "Akademkniga", 2007. 464 p.
36. Vegman Е. F., Zherebin B. N., Pokhvisnev А. N., Yusfin Yu. S., Kurunov I. F., Parenkov А. Е., Chernousov P. I. Iron metallurgy: textbook for universities. Edited by Yu. S. Yusfin. Moscow: IKTs "Akademkniga", 2004. 774 p.
37. Blast furnace production. Guide. Moscow: Metallurgiya, 1989. 496 p.
38. Shapovalov А. N. Theory of metallurgical processes: educational and methodical edition. Novotroitsk: NF NITU "MISiS", 2015. 91 p.
39. Popov Е. S., Sushenko А. V., Vasilyeva L. Е., Tomash М. А. Improvement of the efficiency of using PC in blast-furnace production. Collection of papers. The VIII International Congress of Blast Furnace Workers "Iron Metallurgy – Challenges of the 21st Century". Moscow: Izdatelskiy dom "Kodeks", 2017. pp. 138–145.

Language of full-text russian
Full content Buy