Journals →  Chernye Metally →  2022 →  #12 →  Back

Mineral Processing
ArticleName Reduction of iron ore grinding stages through the use of fine screening in a closed cycle
DOI 10.17580/chm.2022.12.01
ArticleAuthor A. E. Pelevin

Ural State Mining University, Ekaterinburg, Russia:

A. E. Pelevin, Dr. Eng., Associate Professor, Prof. of the Dept. of Mineral Processing, e-mail:


The possibility of application of a two-stage grinding scheme with the use of fine screening in a closed cycle of the second stage instead of a three-stage scheme with hydrocyclones was studied. Under laboratory conditions, an assessment of the effect of the sieve openings size of the screens used in the second grinding stage on the performance of the production of titanomagnetite concentrate for agglomeration was made. The sizes of sieves are considered: 0.63; 0.315; 0.16 and 0.1 mm. Reduction of the sieve opening size from 0.63 to 0.1 mm leads to an increase in the iron content in the concentrate from 56.32 to 62.71 %. At the same time, the yield of the concentrate decreases from 19.75 to 16.65 % and the extraction of iron into the concentrate from 71.07 to 66.72 %. It is shown that the concentrate for agglomeration with iron content of 61% can be obtained using two stages of grinding. The size of the sieve openings of the screens of the second stage should not exceed 0.2 mm. The results obtained in laboratory and industrial conditions, when using 0.15 and 0.1 mm sieves, do not fundamentally differ. Before industrial testing of the new enrichment scheme, it is necessary to perform experimental simulation of the schemes in the laboratory. The two-stage grinding scheme using fine screening in the second stage can be used in the enrichment of titanomagnetite ore. This will reduce the cost of grinding ore. Reduction of the grinding stages leads to an increase in the size of the concentrate, so the scheme is applicable for the production of concentrate for agglomeration.

keywords Grinding, fine screening, sieve opening size, iron concentrate, iron content, concentrate yield, iron extraction

1. Nemykin S. А., Kopanev S. N., Mezentseva Е. V., Okunev S. М. Iron concentrate production with the increased content of useful component. Gornyi Zhurnal. 2017. No. 5. pp. 27–31. DOI: 10.17580/gzh.2017.05.05.
2. Ismagilov R. I., Kozub А. V., Gridasov I. N., Shelepov E. V. Modern directions for increasing the efficiency of processing of ferruginous quartzite on the example of JSC Mikhailovsky MPP named after A. V. Varichev. Gornaya promyshlennost. 2020. No. 4. pp. 98–103. DOI: 10.30686/1609-9192-2020-4-98-103.
3. Löf A., Ericsson M., Löf O. Iron ore market review. CIS Iron and Steel Review. 2019. Vol. 17. pp. 4–9. DOI: 10.17580/cisisr.2019.01.01.
4. Elves Matiolo, Hudson Jean Bianquini Couto, Neymayer Lima, Klaydison Silva, Amanda Soaresde Freitas. Improving recovery of iron using column flotation of iron ore slimes. Minerals Engineering. 2020. Vol. 158. 106608. DOI: 10.1016/j.mineng.2020.106608.
5. Pattanaik A., Rayasam V. Analysis of reverse cationic iron ore fines flotation using RSM-Doptimal design – An approach towards sustainability. Advanced Powder Technology. 2018. Vol. 29, Iss. 12. pp. 3404–3414. DOI: 10.1016/j.apt.2018.09.021.
6. Pelevin А. Е., Sytykh N. А. Increased magnetic field induction separators in titanium magnetite processing. Obogashchenie Rud. 2020. No. 2. pp. 15–20. DOI: 10.17580/or. 2020.02.03.
7. Khokhulya М. S., Opalev А. S., Rukhlenko Е. D., Fomin А. V. Obtaining magnetite-hematite concentrate from ferruginous quartzite and stored wastes of their enrichment on the basis of mineralogical and technological studies. Gorny informatsionno-analiticheskiy byulleten. 2017. No. 4. pp. 259–271.
8. Ismagilov R. I., Baskaev P. М., Ignatova Т. V., Shelepov E. V. The prospects for expanding the iron ore mineral and raw material base through the processing of oxidized ferruginous quartzite of the Mikhailovskoe deposit. Obogashchenie Rud. 2020. No. 3. pp. 19–24. DOI: 10.17580/or.2020.03.04.
9. Kuskov V. B., Lvov V. V., Yushina T. I. Increasing the recovery ratio of iron ores in the course of preparation and processing. CIS Iron and Steel Review. 2021. Vol. 21. pp. 4–8. DOI: 10.17580/cisisr.2021.01.01.
10. Yakubaylik E. К., Ganzhenko I. М., Butov P. Yu., Kilin V. I. Reduction of iron losses during wet separation in high fields. Zhurnal Sibirskogo federalnogo universiteta. Seriya: Tekhnika i tekhnologiya. 2016. Vol. 9. No. 8. pp. 1302–1310.
11. Prokopyev S. А., Pelevin А. Е., Napolskikh S. А., Gelbing R. А. Staged screw separation of magnetite concentrate. Obogashchenie Rud. 2018. No. 4. pp. 28–33. DOI: 10.17580/or.2018.04.06.
12. Karmazin V. V., Andreev V. G., Palin I. V., Zhilin S. N., Pozharskiy Yu. М. Development of equipment for the technology of full-stage beneficiation of magnetite quartzite. Gornyi Zhurnal. 2010. No. 12. pp. 85–89.
13. Opalev А. S., Biryukov V. V., Shcherbakov А. V. Staged separation of magnetite concentrate during the development of energy-saving technology for the enrichment of ferruginous quartzite at JSC Olkon. Gorny informatsionno-analiticheskiy byulleten. 2015. No. 11. pp. 60–62.
14. Karmazin V. V., Sinelnikova N. G., Loginova L. А., Eputaev G. А., Danilova М. G. Study of the staged separation process in separators with a magnetic system having magnets of different heights. Gorny informatsionno-analiticheskiy byulleten. 2007. No. 9. pp. 310–315.
15. Pelevin А. Е. Effects of magnetic flocculation on iron-bearing ore concentration. Obogashchenie Rud. 2021. No. 4. pp. 15–20. DOI: 10.17580/or.2021.04.03.
16. Lomovtsev L. А., Nesterova N. А., Drobchenko L. А. Magnetic enrichment of highly magnetic ores. Moscow: Nedra, 1979. 235 p.
17. Ganzhenko I. М., Zarshikova G. G., Kamalova Т. B., Alekseeva L. А., Shestak Е. М., Yakubaylik E. К. Effect of demagnetization on hydraulic classification of strong magnetic ores. Obogashchenie Rud. 2013. No. 2. pp. 13–16.
18. Botha S., le Roux J. D., Craig I. K. Hybrid non-linear model predictive control of a run-of-mine ore grinding mill circuit. Minerals Engineering. 2018. Vol. 123. pp. 49–62. DOI: 10.1016/j.mineng.2018.04.016.
19. Duanxu Hou, Qiang Zhao, Baoyu Cui, Dezhou Wei, Zhenguo Song, Yuqing Feng. Geometrical configuration of hydrocyclone for improving the separation performance. Advanced Powder Technology. 2022. Vol. 33, Iss. 2. 103419. DOI: 10.1016/j.apt.2021.103419.
20. Osipova N. V. Selection of algorithm parameters to control the loading of the iron ore wet self-grinding mill. Gorny informatsionno-analiticheskiy byulleten. 2021. No. 10. pp. 146–156. DOI: 10.25018/0236_1493_2021_10_0_146.
21. Lvov V. V., Aleksandrova Т. N. Automated control of hydrocyclone classification. Gornyi Zhurnal. 2016. No. 5. pp. 94–96. DOI: 10.17580/gzh.2016.05.14.
22. Samayamutthirian Palaniandy, Rinto Halomoan, Hidemasa Ishikawa. Tower Mill circuit performance in the magnetite grinding circuit – The multi-component approach. Minerals Engineering. 2019. Vol. 133, pp. 10–18. DOI: 10.1016/j.mineng.2018.12.019.
23. Vaisberg L. А., Korovnikov А. N., Trofimov V. А. Innovative re-equipment of screening circuits (to commemorate the 100th anniversary of the Mekhanobr instutute). Gornyi Zhurnal. 2017. No. 1. pp. 11–17.
24. Moraes M. N., Galery R., Mazzinghy D. B. A review of process models for wet fine classification with high frequency screens. Powder Technology. 2021. Vol. 394. pp. 525–532. DOI: 10.1016/j. powtec.2021.08.078.
25. Korovnikov А. N., Buzunova Т. А. Ore slurry classification on a vibrating screen. Obogashchenie Rud. 2018. No. 5. pp. 17–21.
26. Fominykh V. G., Kraeva Yu. P., Larina N. V. Petrology and ore genesis of the Kachkanar massif. Sverdlovsk: Izdatelstvo RISO UNTs AN SSSR, 1987. 180 p.
27. Doroshenko М. V., Bashlykova Т. V. Technological properties of minerals: Handbook for Technologists. Moscow: Teploenergetik, 2007. 296 p.
28. Kantemirov V. D., Titov R. S., Yakovlev А. М. Appraisal of titanium magnetite ores mineral composition effect upon magnetic concentration results. Obogashchenie Rud. 2017. No. 4. pp. 36–41. DOI: 10.17580/or.2017.04.07.
29. Pelevin А. Е., Sytykh N. А., Cherepanov D. V. Effect of particle size on the efficiency of dry magnetic separation. Gorny informatsionno-analiticheskiy byulleten. 2021. No. 11-1. pp. 293–305. DOI: 10.25018/0236_1493_2021_111_0_293.
30. Campos T. M., Bueno G., Barrios G. K .P., Tavares L. M. Pressing iron ore concentrate in a pilotscale HPGR. Part 1: Experimental results. Minerals Engineering. 2019. Vol. 140. 105875. DOI: 10.1016/j.mineng.2019.105875.
31. Campos T. M., Bueno G., Barrios G. K. P., Tavares L. M. Pressing iron ore concentrate in a pilotscale HPGR. Part 2: Modeling and simulation. Minerals Engineering. 2019. Vol. 140. 105876. DOI: 10.1016/j.mineng.2019.105876.
32. Campos T. M., Bueno G., Rodriguez V. A., Böttcher A.-Ch., Kwade A., Mayerhofer F., Tavares L. M. Relationships between particle breakage characteristics and comminution response of fine iron ore concentrates. Minerals Engineering. 2021. Vol. 164. 106818. DOI: 10.1016/j.mineng.2021.106818.
33. Pelevin А. Е., Sytykh N. А. Comparison of the use of hydrocyclones and screens in a closed cycle of grinding titanomagnetite ore. Gorny informatsionno-analiticheskiy byulleten. 2022. No. 5. pp. 154–166. DOI: 10.25018/0236_1493_2022_5_0_154.
34. Pelevin А. Е., Sytykh N. А. Titanomagnetite ore two-stage grinding circuit test. Obogashchenie Rud. 2018. No. 2. pp. 13–18. DOI: 10.17580/or.2018.02.03.
35. Pelevin А. Е., Sytykh N. А. Fine hydraulic screening for staged separation of titanium-magnetite concentrate. Obogashchenie Rud. 2021. No. 1. pp. 8–14. DOI: 10.17580/or.2021.01.02.

Language of full-text russian
Full content Buy