Журналы →  Gornyi Zhurnal →  2022 →  №2 →  Назад

Название Mineral resource potential of Kaalamo magmatic system
DOI 10.17580/gzh.2022.02.02
Автор Ivashchenko V. I.
Информация об авторе

Institute of Geology, Karelia Science Center, Russian Academy of Sciences, Petrozavodsk, Russia:

V. I. Ivashchenko, Leading Researcher, Candidate of Geological and Mineralogical Sciences, ivashche@krc.karelia.ru


As a region with favorable geographic and climatic conditions and the developed infrastructure, Karelia is attractive for commercial-scale mining of mineral resources which enjoy high demand in the modern economy. Such resources include platinum group metals and gold. Promising occurrences of these minerals are detected in the Ladoga region, in associations with intrusive rocks of Kaalamo clinopyroxenite–gabbro norite–diorite system aged as 1888.3±5.2 million years. With respect to the age and petrochemistry, this rock system is somewhat similar to Kotalahti and Vammala Nickel Belts in Finland. Noble metals in Kaalamo intrusions belong to the syngenetic and epigenetic types. The syngenetic ore genesis started at the late magmatic stage (~800 °C) of intrusions, evolved and finished at the hydrothermal–metasomatic stage (<271 °C). The syngenetic mineralization (Araminlampi, Saouth Kaalamo, Keinoset, Ninimyaki) represents strata (to 10–11 m thick) impregnated with sulfides (pyrrhotine, chalcopyrite) and with noble metals in meta pyroxenite and hornblendite at the contents: ΣPd, Pt, Au—0.2–1.1 g/t; Сu—0.1–1.0%, Ni—0.03–0.1%, Co—0.01–0.03%. The epigenetic mineralization originated at the temperature of ~500–<230 °C in the zones (to 3.5 m thick) of intense shear deformation and low-temperature metasomatism (actinolite, tremolite, chlorite, prehnite, albite, quartz, calcite) and, among other things, transformed the older ore shoots. The ore content of the largest occurrences of this type (Surisuo, Rantamyaki) varies greatly: ΣPd, Pt, Au—0.1–11 g/t; Сu—0.2–2.0%, Ni—0.03–0.2%, Co—0.01–0.05%. The test ores contain up to 50 noble metals; both mineralization types are dominated by palladium bismuth–tellurides and sperrylites. The geological, mineralogical, physicochemical and geochemical data are reflective of the probable effect exerted on the ore genesis by the Svekofennian regional metamorphism and granite formation. The undiscovered potential resources of ΣPt, Pd, Au in four out of seven detected ore occurrences total approximately 9 tons. The overall mineral resource potential of Kaalamo magmatic system embraces 20–30 t of noble metals, 50–60 kt of copper and 10 kt of scandium (all meta pyroxenites, including nonmetallic, have steadily consistent contents of Sc—70–90 g/t).
The study was carried out under the state contract with the Karelia Science Center of the Russian Academy of Sciences, R&D Topic No. 121040600173-1.

Ключевые слова Karelia, noble metal deposits, ore occurrences, geological characteristic, Kaalamo magmatic system, mineral resource potential, assessment
Библиографический список

1. Silchenko S. The world’s most precious metal can help Russian industry. Finansovaya gazeta. 2019. Available at: https://fingazeta.ru/business/promyshlennost/454938 (accessed: 15.12.2021).
2. Gurskaya L. I., Dodin D. A. Mineral resources of platinum group metals in Russia: expansion prospects. Regionalnaya geologiya i metallogeniya. 2015. No. 64. pp. 84–93.
3. Ivashchenko V. I., Lavrov O. B. Noble metal mineralization in Southeastern Karelia. Problems in the gold and diamond potential of north European Russia. Petrozavodsk : KarNTs RAN, 1997. pp. 44–51.
4. Ivashchenko V. I., Ruchyev A. M., Golubev A. I. Two Types of Noble Metal Mineralization in the Kaalamo Massif (Karelia). Doklady Earth Sciences. 2016. Vol. 468, Iss. 1. pp. 441–446.
5. Lavrov O. B., Kuleshevich L. V. Platinoids in the Kaalamo differentiated massif in the Northern Ladoga region, Karelia, Russia. Geology of Ore Deposits. 2017. Vol. 59, No. 7. pp. 632–641.
6. Stepanov K. I., Sanin D. M., Sanina G. N. National geological map of the Russian Federation. Scale 1:200 000. 2nd ed., Karelia Series. Sheets R-35-XXIV, R-36-XIX. Explanatory note. Saint-Petersburg, 2004. 230 p.
7. Saranchina G. M. Petrology of Kaalamo intrusion (Southwest Karelia). Izvestiya Karelo-Finskoy nauchno-issledovatelskoy bazy Akademii nauk SSSR. 1949. No. 2. pp. 57–80.
8. Bogachev V. A., Ivanikov V. V., Kozyreva I. V., Konopelko D. L., Levchenkov O. A. et al. U-Pb zircon age determination of syn-orogenic gabbro–diorite and granitoid intrusions (1.89–1.87 GA) in the North Ladoga region. Vestnik Sankt-Peterburgskogo universiteta. Seriya 7. Geologiya. Geografiya. 1999. No. 3. pp. 23–31.
9. Barnes S. J., Makkonen H. V., Dowling S. E., Hill R. E. T., Peltonen P. et al. The 1.88 Ga Kotalahti and Vammala nickel belts, Finland: geochemistry of the mafic and ultramafic metavolcanic rocks. Bulletin of the Geological Society of Finland. 2009. Vol. 81. pp. 103–141.
10. Makkonen H. V., Mäkinen J., Kontoniemi O. Geochemical discrimination between barren and mineralized intrusions in the Svecofennian (1.9 Ga) Kotalahti Nickel Belt, Finland. Ore Geology Reviews. 2008. Vol. 33, Iss. 1. pp. 101–114.
11. Maier W. D., Lahtinen R., O’Brien H. Mineral Deposits of Finland. Amsterdam : Elsevier, 2015. 792 p.
12. Ivashchenko V. I., Golubev A. I. Gold and platinum of Karelia: genetic types of mineralization and prospects. Petrozavodsk : KarNTs RAN, 2011. 369 p.
13. Spiridonov E. M., Kulagov E. A., Serova A. A., Kulikova I. M., Korotaeva N. N. et al. Genetic Pd, Pt, Au, Ag, and Rh Mineralogy in Noril’sk Sulfide Ores. Geology of Ore Deposits. 2015. Vol. 57, No. 5. pp. 402–432.
14. Evstigneeva T. L. Crystal chemistry of platinum metal minerals. Strategic Metal Deposits : Location Patterns, Sources, Conditions and Mechanism of Formation. Conference Proceedings. Moscow : IGEM RAN, 2015. pp. 196–197.
15. Bourdelle F., Parra T., Chopin C., Beyssac O. A new chlorite geothermometer for diagenetic to lowgrade metamorphic conditions. Contributions to Mineralogy and Petrology. 2013. Vol. 165, Iss. 4. pp. 723–735.
16. Kapsiotis A., Rassios A. E., Antonelou A., Tzamos E. Genesis and Multi-Episodic Alteration of Zircon-Bearing Chromitites from the Ayios Stefanos Mine, Othris Massif, Greece: Assessment of an Unconventional Hypothesis on the Origin of Zircon in Ophiolitic Chromitites. Minerals. 2016. Vol. 6, Iss. 4. 124. DOI: 10.3390/min6040124
17. Barnes S. J., Robertson J. C. Time scales and length scales in magma flow pathways and the origin of magmatic Ni–Cu–PGE ore deposits. Geoscience Frontiers. 2019. Vol. 10, Iss. 1. pp. 77–87.
18. Lesher C. M. Up, down, or sideways: emp lacement of magmatic Fe–Ni–Cu–PGE sulfide melts in large igneous provinces. Canadian Journal of Earth Sciences. 2019. Vol. 56, No. 7. pp. 756–773.
19. Yiguan Lu, Lesher C. M., Jun Deng. Geochemistry and genesis of magmatic Ni-Cu-(PGE) and PGE-(Cu)-(Ni) deposits in China. Ore Geology Reviews. 2019. Vol. 107. pp. 863–887.
20. Rakhimov I. R., Saveliev D. E., Vishnevskiy A. V. Sulfide-platinum met al mineralization of Khudolaz complex Malyutka altered gabbro massif: hydrothermal influence to the mineral association types. Vestnik Instituta geologii Komi nauchnogo tsentra Uralskogo otdeleniya RAN. 2019. No. 7(295). pp. 15–24.
21. Novakov R. M., Kungurova V. E., Moskaleva S. V. Formation conditions of noble metal mineralization in sulfide cobalt-copper-nickel ores of Kamchatka (on the example of Annabergitovaya Schel ore occurrence). Journal of Mining Institute. 2021. Vol. 248, No. 2. pp. 209–222.
22. Mudd G. M. Assessing the Availability of Global Metals and Minerals for the Sustainable Century: From Aluminium to Zirconium. Sustainability. 2021. Vol. 13, Iss. 19. 10855. DOI: 10.3390/su131910855
23. Aleksandrova T. N., O’Connor C. Processing of platinum group metal ores in Russia and South Africa: current state and prospects. Journal of Mining Institute. 2020. Vol. 244. pp. 462–473.
24. Petrov S. V. Prospects of platinum metal mining in Russia : New deposits and old challenges. Ural Mineralogy School-2020 : Under the Gold and Platinum Sign. Proceesing XXVI All-Russian Scientific Youth Conference with International Participation. Yekaterinburg : Alfa-Print, 2020. No. 26. pp. 88–90.

Language of full-text русский
Полный текст статьи Получить