Журналы →  Tsvetnye Metally →  2012 →  №11 →  Назад

BENEFICIATION
Название Electrodynamic separators application in secondary non-ferrous metallurgy
Автор Konyaev A. Yu., Konyaev I. A., Nazarov S. L.
Информация об авторе

Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russia

A. Yu. Konyaev, Professor of the Chair “Electrical Engineering and Electrical and Technological Systems”, e-mail: konyaev.an@yandex.ru
I. A. Konyaev, Assistant Professor of the Chair “Electric Machinery”

S. L. Nazarov, Doctoral Candidate of the Chair “Electrical Engineering and Electrical and Technological Systems”

Реферат

Electrodynamic separation based on interaction force of a magnetic field with eddy currents induced by this field in conducting particles, is the most effective for the collection and recycling of non-ferrous metals. The article deals with the evaluation of the application of traveling magnetic field electrodynamic separators. For example, there are effective separation results in a wide range of application: separation of non-ferrous metals from mixed solid waste stream (municipal or industrial); non magnetic metals induction sorting; separation of conductive metals particles according to size; aluminium slag benefication, etc. The paper deals with the comparative analysis of electrodynamic separators with travelling magnetic field. Different designs of separators (with cylindrical or linear primary) are applied depending on capacity of units and on wastes properties. The fields of application of either version and outlooks of improvement of separators are defined. The separating efficiency is greatly influenced by the magnetic pole reversal frequency and the effective flow density of magnetism. Separation of non-ferrous conductive metal grain sizes from 150 mm down to 5 mm is possible — and in certain cases, down to a grain sizes of 1 mm. The results of the number of electrodynamic separators designs are described. For example, special attention is paid to research of sorting of cooper alloys. Non-ferrous metal separators can be used as stand-alone solutions, and in combination with shredder and classifying systems, in a variety of recycling plants and at metallurgical enterprises for non-ferrous metals refinement.

Ключевые слова Electrodynamic separation, versions of separators designs, comparative analysis, extraction of metals from waste, metals sorting, slag benefication, research results
Библиографический список

1. Edison T. A. Ore separator. Patent US, No. 400317. Patented March 26, 1889.
2. Krivtsova G. B., Ratnikova A. I. Sovershenstvovanie protsessov elektroseparatsii i konstruktsiy elektroseparatorov : sbornik nauchnykh trudov (Improvement of electric separation proces ses and structures of electrostatic separators : collection of scientific proceedings). Leningrad : Mekhanobr, 1987. pp. 58–68.
3. Kravchenko N. D., Karmazin V. I. Magnitnaya separatsiya otkhodov tsvetnykh metallov (Magnetic separation of the wastes of non-ferrous metals). Moscow : Metallurgiya, 1986. 120 p.
4. Bredikhin V. N., Izvekov N. I., Laushkina A. Ya. Tsvetnaya metallurgiya – Russian Journal of Non-Ferrous Metals. 1982. No. 4. pp. 24–25.
5. Abrosimov A. S., Bondarenko Yu. A., Frolov A. P. Tsvetnye Metally – Non-ferrous metals. 1989. No. 8. pp. 100–104.
6. Konyaev A. Yu., Zhukov A. A., Shirshov B. P. Elektrotekhnicheskaya promyshlennost. Seriya “Elektricheskie mashiny” – Electrical industry. Series “Electrical machinery”. 1981. No. 9. pp. 16–18.
7. Konyaev A. Yu., Nazarov S. L. Elektrotekhnika – Russian Electrical Engineering. 1995. No. 10. pp. 56–61.
8. Konyaev I. A., Markin N. E., Nazarov S. L., Konyaev A. Yu. Elektrichestvo – Electrical Technology Russia. 2007. No. 10. pp. 68–72.
9. Patrik A. A., Murakhin N. N., Derendyaeva T. N. et al. Promyshlennaya energetika – Industrial energy. 2001. No. 6. pp. 16–19.
10. Shustrov A. Yu., Matsenko Yu. A., Nagibin V. A. Tsvetnye Metally – Non-ferrous metals. 2004. No. 1. pp. 70–73.
11. Zolotorevskiy V. S. Tsvetnye Metally – Non-ferrous metals. 2004. No. 7. pp. 76–80.

Language of full-text русский
Полный текст статьи Получить
Назад