Journals →  Tsvetnye Metally →  2011 →  #5 →  Back

Metal processing
ArticleName Structure and properties of ultra-fine grain aluminium alloys and possibilities of their usage
ArticleAuthor Dobatkin S. V.
ArticleAuthorData S. V. Dobatkin, Head of Laboratory of Metallurgy Sciences of Non-ferrous and Light Metals, e-mail:, The Baykov Institute of Metallurgy and Material Science of the Russian Academy of Sciences.
The structures and properties (durability during static and cylindrical pressures, plasticity, superplasticity) of ultra-fine grain aluminium alloys and possibilities of their usage have been considered. Two schemes of intense plastic deformation as the most developed have been considered: torsion under hydrostatic pressure and equal-channel angle pressure. Intense plastic deformation of aluminium alloys lead to grain crushing down to nano-size. The structure has been characterized with high dislocation density, non-equilibrium grain borders and changed phase composition. This structure is characterized by very high density and relatively low plasticity. The possibility of raising fatique properties and demonstration of low-temperature and high-speed superplasticity in extra strong ultra-fine grain aluminium alloys has been shown. Usage of intensive plastic deformation of ultra-fine grain aluminium alloys is the most prospective as semi-finished product for follow formation in condition of superplasticity.
keywords Ultra-fine grain alloys, aluminium alloys, plastic deformation, durability superplasticity, alloy structure, energy intensity.

1. Investigations and applications of severe plastic deformation. ed.T. C. Lowe, R. Z. Valiev. NATO Science Series. Series 3. High Technology. 2000. Vol. 80. 394 p.

2. Valiev R. Z., Aleksandrov I. V. Obemnye nanostrukturnye metallicheskie materialy: poluchenie, struktura i svoystva (Volume nano-structural metall materials: obtaining, structure, preperties.). Moskow : IKTs «Akademkniga», 2007. 397 p.

3. Lyakishev N. P., Alymov M. I., Dobatkin S. V. Metally – Metals. 2003. No. 3. pp. 3–16.

4. Elagin V. I. Tekhnologiya legkikh splavov – Technology of Light Alloys. 2008. No. 2. pp. 6–20.

5.Cahn J. W. Acta met. 1956. Vol. 4. pp. 449–454.

6. Rybin V. V. Bol'shie plasticheskie deformatsii i razrushenie metallov (Great plastic deformation and destruction of metals). Moscow : Metallurgiya, 1986. 224 p.

7. Gorelik S. S., Dobatkin S. V., Kaputkina L. M. Rekristallizatsiya metallov i splavov (Recrystallizing of Metals and Alloys). Moscow : MISIS, 2005. 432 p.

8. Farber V. M. Materialovedenie i termicheskaya obrabotka materialov - Material Sciences and Thermal Processing of Materials. 2002. No. 8. pp. 3–12.

9. Doherty R. D., Szpunar J. A. Acta met. 1984. Vol. 32, No. 10. pp. 1789–1798.

10. Rossard C., Le Bon A., Thivellier D., Manenc J. Met. Sci. Rev. Met. 1969. Vol. 66, No. 4. pp. 263–270.

11. Dobatkin S. V., Kaputkina L. M. Fizika metallov i metallovedenie – Physics of Metal and Material Science. 2001. Vol. 91, No. 1. pp. 79–89.

12. Bernshteyn M. L., Dobatkin S. V., Kaputkina L. M., Prokoshkin S. D. Diagrammy goryachey deformatsii, struktura i svoystva staley (Diagrams of hot deformation, steel structure and properties). Moscow : Metallurgiya, 1989. 544 p.

13. Dobatkin S. V., Zakharov V. V., Valiev R. Z. And etc. Nanomaterials by Severe Plastic Deformation. ed. M. Zehetbauer, R. Z. Valiev. J. Wiley VCH Weinheim (Germany). 2003. pp. 158–164

14. Dobatkin S. V., Zakharov V. V., Vinogradov A. Yu. and etc. Metally – Metals. 2006. No. 6. pp. 79–90.

15. Dobatkin S. V., Zakharov V. V., Rostova T. D. and etc. Tekhnologiya legkikh splavov – Technology of Light Alloys. 2006. No. 1/2. pp. 62–66.

16. Dobatkin S. V. Materials Science Forum. 2003. Vol. 426–432. pp. 2699–2704.

17. Fбtay D., Bastarash E., Nyilas K. and etc. Zeitschrift fur Metallkunde. 2003. Vol. 94, No. 7. pp. 133–138.

18. Roven H. J., Nesboe H., Werenskiold J. C., Seibert T. Materials Science and Engineering. 2005. A410–411. pp. 426–429.

19. Markushev M. V., Bampton C. C., Murashkin M. Yu., Hardwick D. A. Materials Science and Engineering 1997. A234–236. pp. 927–931.

20. Markushev M. V., Murashkin M. Y. Ultrafine Grained Materials II. ed. Y. T. Zhu, T. G. Langdon, R. S. Mishra, S. L. Semiatin, M. J. Saran, T. C. Lowe. USA : TMS. Warrendale. PA. 2002. pp. 371–380.

21. Kim W. J., Chung C. S., Ma D. S. and etc. Scripta Materialia. 2003. Vol. 49. pp. 333–338.

22. Kim J. K., Jeong H. G., Hong S. I. and etc. Scripta Materialia 2001. Vol. 45. pp. 901–907.

23. Valiev R. Z. Nature Materials. 2004. Vol. 3. pp. 511–520.

24. Dobatkin S., Estrin Y., Zakharov V. and etc. Intern. Journal of Materials Research. 2009. Vol. 100, No. 12. pp. 1697–1704.

25. Dobatkin S. V., Zakharov V. V., Estrin Yu. and etc. Tekhnologiya legkikh splavov – Technology of Light Alloys. 2009. No. 3. pp. 46–59.

26. Dobatkin S., Estrin Y., Zakharov V. and etc. Materials Science Forum. 2010. Vol. 633–634. pp. 311–319.

27. Valiev R. Z., Salimonenko D. A., Tsenev N. K. and etc. Scripta Materialia. 1997. Vol. 37. pp. 1945–1951.

28. Lee S., Utsunomiya A., Akamatsu H. and etc. Acta Materialia. 2002. Vol. 50. pp. 553–564.

29. Musin F., Kaibyshev R., Motohashi Y., Itoh G. Scripta Materialia. 2004. Vol. 50. pp. 511–516.

30. Dobatkin S. V., Zakharov V. V., Perevezentsev V. N. and etc. Tekhnologiya legkikh splavov – Technology of Light Alloys. 2010. No. 1. S. 74–84.

31. Valiev R. Z., Kaybyshev O. A., Kuznetsov R. I. and etc. Dokl. AN SSSR. 1988. Vol. 301, No. 4. pp. 864–868.

32. Sakai G., Horita Z., Langdon T. G. Mater. Sci. Eng. 2005. A393. pp. 344.

33. Mishra R. S., Valiev R. Z., McFadden S. X. and etc. Phil. Mag. 2001. A81. pp. 37–44.

34. Dobatkin S. V., Bastarache E. N., Sakai G. and etc. Mater. Sci. Eng. 2005. A408. pp. 141–146.

35. Perevezentsev V. N., Shcherban' M. Yu., Murashkin M. Yu., Valiev R. Z. Pisma v Zhurnal tekhnicheskoy fiziki. (Letters in journal of technical physics) 2007. Vol. 33, No. 15. pp. 40–46.

36. Xu C., Dobatkin S.V., Horita Z., Langdon T. G. Materials Science and Engineering. 2009. A500. pp. 170–175.

37. Estrin Y., Vinogradov A. Intern. Journal of Fatigue. 2010. Vol. 32. pp. 898–907.

38. Vinogradov A., Hashimoto S. Materials Transactions. 2001. Vol. 42, No. 1. pp. 74–84.

39. Hoppel H. W., May J., Goken M. Proc. of 6th Int. Conf. on Low Cycle Fatigue (LCF 6). DVM. Berlin. Germany. 2008. pp. 325–332.

40. Vinogradov A., Washikita A., Kitagawa K., Kopylov V. I. Materials Science and Engineering. 2003. A349. pp. 318–326.

41. Srinivasan R., Cherukuri B., Chaudnury P. K. Mater. Sci. Forum. Vol. 503–504. pp. 371–376.

42. Saito Y., Utsunomiya H., Tsuji N., Sakai T. Acta. Materialia. 1999. Vol. 47. pp. 579–587.

43. Estrin Y., Murashkin M., Valiev R. Fundamentals of aluminium metallurgy : production, processing and applications. ed. R. Lumley : Woodhead Publishing Limited. Cambridge. 2010. pp. 468–503.

Language of full-text russian
Full content Buy