Журналы →  Tsvetnye Metally →  2020 →  №10 →  Назад

RARE METALS, SEMICONDUCTORS
Название Carbonization processing of bauxite residue as an alternative rare metal recovery process
DOI 10.17580/tsm.2020.10.08
Автор Pyagay I. N., Kremcheev E. A., Pasechnik L. A., Yatsenko S. P.
Информация об авторе

Saint Petersburg Mining University, Saint Petersburg, Russia:

I. N. Pyagay, Professor, Doctor of Technical Sciences, e-mail: igor-pya@yandex.ru
E. A. Kremcheev, Head of Department, Doctor of Technical Sciences, e-mail: kremcheev@spmi.ru

 

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia:

L. A. Pasechnik, Lead Researcher, Candidate of Chemical Sciences, e-mail: pasechnik@ihim.uran.ru
S. P. Yatsenko, Principal Researcher, Professor, Doctor of Chemical Sciences, e-mail: yatsenko@ihim.uran.ru

Реферат

A prerequisite for commercial production of rare metals is a continuous effort given to developing knowledge-intensive recovery and refining techniques. Commonly known natural raw materials and conventional processing techniques, which are based on initial acid activation and recovery of minerals, as well as selective recovery of the target component (i.e. by sorption and extraction) cannot always ensure sufficient productivity or cost-effectiveness. This paper considers certain aspects of continued research in this area, which would require novel techniques. Such techniques should be based on new approaches allowing for the use of alternative raw materials to produce valuable rare metals on a cost-effective basis. It is demonstrated that red mud, i.e. waste material generated by bauxite industry and rich in scandium and other rare metals, can serve as such alternative source material. The paper describes the results of a study that looked at finding an optimum carbonization process for red mud that would ensure a consistent and predictable complexing process with regard to certain components. The paper also examines the environment in which soluble carbonate complexes can be stabilized and concentrated in the pregnant solution before the primary scandium-bearing concentrate can be recovered. The authors identified target parameters that determine enhanced filtration properties of carbonized slurry to ensure complete separation of the pregnant solution from the dehydrated (to the residual moisture content of 18%) carbonized residue. The paper highlights some positive factors of the carbonization process which enable a comprehensive utilization of alumina production waste. They include a long-term sequestration of carbon dioxide in the air and modified physical and chemical properties of red muds. This makes carbonized muds more compactable and thus more suitable for transportation and minimizes waste disposal hazards.
The experimental research was carried out in conformance with the governmental assignments of the Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences and Saint-Petersburg Mining University.

Ключевые слова Red mud, carbonization, rare metals, scandium, zirconium
Библиографический список

1. Bykhovskiy L. Z., Arkhangelskaya V. V., Tigunov L. P., Anufrieva S. I. Russian scandium: Prospective development of mineral deposits and development of the production. Minerals. Geology and Economics Series. Moscow : VIMS, 2007. No. 22. 45 p.
2. Suzdaltsev A. V., Zaikov Yu. P., Nikolaev A. Yu. Modern ways for obtaining Al – Sc master alloys: A review. Tsvetnye Metally. 2018. No. 1. pp. 69–73. DOI: 10.17580/tsm.2018.01.09.
3. Yang Wang, Zheng Li, Ruizhi Wu. Effects of Sc and Zr Addition on Microstructure and Mechanical Properties of Al – 3Cu – 2Li Alloy. Light Metals. 2019. pp. 471–480.
4. Tikhonov P. A., Arsentiev M. Y., Kalinina M. V. et al. Preparation and properties of ceramic composites with oxygen ionic conductivity in the ZrO2 – CeO2 – Al2O3 and ZrO2 – Sc2O3 – Al2O3 systems. Glass Physics and Chemistry. 2008. Vol. 34. No. 3. pp. 319–323. DOI: 10.1134/S1087659608030139.

5. Fujii H., Katayama Y., Shimura T., Iwahara H. Protonic Conduction in Perovskite-type Oxide Ceramics Based on LnScO3 (Ln = La, Nd, Sm or Gd) at High Temperature. Journal of Electroceramics. 1998. Vol. 2. pp. 119–125. DOI: 10.1023/A:1009935208872.
6. Eremina R. M., Tarasov V. F., Konov K. B. et al. EPR Study of Sc2SiO5:Nd143 Isotopically Pure Impurity Crystals. Applied Magnetic Resonance. 2018. Vol. 49. pp. 53–60. DOI: 10.1007/s00723-017-0966-x.
7. Baklanova I. V., Krasilnikov V. N., Perelyaeva L. A., Gyrdasova O. I. Production, morphology and luminescence properties of nanodispersed scandium sesquioxides doped with europium. Zhurnal neorganicheskoy khimii. 2012.
Vol. 57, No. 12. pp. 1627–1633. DOI: 10.1134/S0036023612120030.
8. Athira L., Sundararajan M., Renjith R. A. et al. A review of scandium–hafnium doped TiO2 nanocrystals. SN Applied Sciences. 2020. Vol. 2, No 814. DOI: 10.1007/s42452-020-2508-7.
9. Akcil A., Akhmadiyeva N., Abdulvaliyev R., Meshram A. P. Overview On Extraction and Separation of Rare Earth Elements from Red Mud: Focus on Scandium. Mineral Processing and Extractive Metallurgy Review. 2018. Vol. 39, No. 3. pp. 145–151. DOI: 10.1080/08827508.2017.1288116.
10. Ochsenkuehn-Petropoulou M., Tsakanika L.-A., Lymperopoulou T. Ochsenkuehn K.-M. et al. Efficiency of Sulfuric Acid on Selective Scandium Leachability from Bauxite Residue. Metals. 2018. Vol. 8, No. 11. p. 915. DOI: 10.3390/met8110915.
11. Nikolaev I. V., Zakharova V. I., Khayrullina R. T. Acid treatment of red muds. Problems and prospects. Izvestiya vuzov. Tsvetnaya metallurgiya. 2000. No. 2. pp. 19–26.
12. Tenyakov V. A., Edlin M. G., Miloslavskaya O. A. Bauxite deposits and scandium. Doklady Akademii nauk SSSR. 1990. Vol. 311, No. 5. pp. 1220–1233.
13. Molchanova T. V., Akimova I. D., Smirnov K. M., Krylova O. K., Zharova E. V. Hydrometallurgical extraction of scandium from waste products generated by various industries. Metally. 2017. No. 2. pp. 11–16.
14. Ecological disaster in Hungary: Toxic waste (red mud) floods the city. Available at: http://loveopium.ru/evropa/katastrofa-v-vengrii.html.
15. Klauber C., Gräe M., Power G. Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy. 2011. Vol. 108. pp. 11–32. DOI: 10.1016/j.hydromet.2011.02.007.
16. Liu Z., Li H. Metallurgical process for valuable elements recovery from red mud: A review. Hydrometallurgy. 2015. Vol. 155. pp. 29–43.
17. Evans K. The history, challenges, and new developments in the management and use of bauxite residue. Journal of Sustainable Metallurgy. 2016. Vol. 2. pp. 316–331. DOI: 10.1007/s40831-016-0060-x.
18. Loginova I. V., Shoppert A. A., Kyrchikov A. V., Ordon S. F., Medyankina I. S. Red muds generated by alumina industry as a high-iron raw material for iron and steel industry. Stal. 2016. No. 1. pp. 67–70.
19. Kozhevnikov G. N., Vodopyanov A. G., Pankov V. A., Kuzmin B. P. Joint complex processing of bauxites and red muds. Tsvetnye Metally. 2013. No. 12. pp. 36–39.
20. Trushko V. L., Utkov V. A., Bazhin V. Yu. Complete processing of red muds generated by alumina industry: Relevance and capacity. Zapiski Gornogo instituta. 2017. Vol. 227. pp. 547–553. DOI: 10.25515/PMI.2017.5.547.
21. Borra C. R., Blanpain B., Pontikes Y. et al. Smelting of Bauxite Residue (Red Mud) in View of Iron and Selective Rare Earths Recovery. Journal of Sustainable Metallurgy. 2016. Vol. 2. pp. 28–37. DOI: 10.1007/s40831-015-0026-4.
22. Zinoveev D. V., Grudinskiy P. I., Dyubanov V. G., Kovalenko L. V., Leontiev L. I. Red mud processing practices around the world: A review. Part 1. Pyrometallurgical techniques. Izvestiya vuzov. Chernaya metallurgiya. 2018. Vol. 61, No. 11. pp. 843–858.
23. Gazaleeva G. I., Mushketov A. A., Sopina N. A., Sheshukov O. Yu. et al. Method for integrated treatment of red mud. Patent RF, No. 2528918. Published: 20.09.2014. Bulletin No. 26.
24. Pasechnik L. A., Pyagay I. N., Yatsenko S. P. Use of carbonization technique to recover scandium from red mud. Tsvetnaya metallurgiya. 2009. No. 1. pp. 42–46.
25. Pasechnik L. A., Shirokova A. G., Koryakova O. V., Sabirzyanov N. A., Yatsenko S. P. The complexing ability of scandium in alkaline medium. Zhurnal prikladnoy khimii. 2004. Vol. 77, Iss. 7. pp. 1086–1089.
26. Kirwan L. J., Hartshorn A., McMonagle J. B., Fleming L., Funnell D. Chemistry of bauxite residue neutralisation and aspects to implementation. International Journal of Mineral Processing. 2013. Vol. 119. pp. 40–50. DOI: 10.1016/j.minpro.2013.01.001.
27. Medvedev A. S., Kirov S. S., Suss A. G., Khayrullina R. T. Technical scandium oxide obtaining from red mud of Urals Aluminium Smelter. Tsvetnye Metally. 2015. No. 12. pp. 47–52.
28. Medvedev A. S., Kirov S. S., Suss A. G., Khayrullina R. T. Carbonization leaching of scandium from red mud with preliminary pulp gassing by carbonic acid. Tsvetnye Metally. 2016. No. 6. pp. 67–73. DOI: 10.17580/tsm.2016.06.09.
29. Stepanov S. I., Aung M. M., Aung Kh. Ye., Boyarintsev A. V. Carbonate leaching of scandium from red muds: Chemical aspects. Proceedings of the Voronezh State University of Engineering Technologies. 2018. Vol. 80, No. 4. pp. 349–355. DOI: 10.20914/2310-1202-2018-4-349-355.
30. Rychkov V. N., Kirillov E. V., Kirillov S. V., Bunkov G. M., Titova S. M. Scandium Recovery from Red Mud by Carbonate Assist. KnE Materials Science. 2017. Vol. 2, No. 2. pp. 163–167. DOI: 10.18502/kms.v2i2.964.
31. Pasechnik L. A., Medyankina I. S., Yatsenko S. P. Scandium extraction from multicomponent systems by crystallization of complex sulfates. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 848. p. 012064. DOI: 10.1088/1757-899x/848/1/012064.
32. Pasechnik L. А., Medyankina I. S., Skachkov V. М., Sabnirzyanov N. А. et al. Recovery of zirconium from alumina production red muds. Fluorine notes. 2018. No. 3. pp. 5–6.
33. Pyagay I. N. The block processing of red mud of alumina production. Tsvetnye Metally. 2016. No. 7. pp. 43–51. DOI: 10.17580/tsm.2016.07.05.
34. Cooling D. J., Hay P. S., Guilfoyle L. Carbonation of bauxite residue. Proceedings of the 6th International Alumina Quality Workshop. Brisbane, 2002. pp. 185–190.
35. Rai S. B., Wasewar K. L., Mishra R. S., Mahindran P. et al. Sequestration of carbon dioxide in red mud. Desalination and Water Treatment. 2013. Vol. 51, No. 10–12. pp. 2185–2192. DOI: 10.1080/19443994.2012.734704.
36. Gorbachev S. N., Aleksandrov A. V., Ordon S. F. Prospective implementation of the ultra-dry red mud stockpiling technique. Zhurnal Sibirskogo federalnogo universiteta. Tekhnika i tekhnologii. 2017. Vol. 10, No. 7. pp. 854–861. DOI: 10.17516/1999-494X-2017-10-7-854-861.
37. Power G., Gräfe M., Klauber C. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy. 2011. Vol. 108, Iss. 1-2. pp. 33–45. DOI: 10.1016/j.hydromet.2011.02.006.
38. Pasechnik L. A., Pyagay I. N., Medyankina I. S., Skachkov V. M. et al. Processing of red muds and the impact of the selected processing technique on the copper (II) ion sorption. Ekologiya i promyshlennost Rossii. 2016. Vol. 20, No. 5. pp. 27–33. DOI: 10.18412/1816-0395-2016-5-27-33.

Language of full-text русский
Полный текст статьи Получить
Назад