Journals →  Tsvetnye Metally →  2017 →  #11 →  Back

ArticleName Organo-alkaline leaching of molybdenite concentrate
DOI 10.17580/tsm.2017.11.07
ArticleAuthor Udoeva L. Yu., Selivanov E. N., Pikulin K. V.

Institute of Metallurgy of the Ural Branch of the RAS, Ekaterinburg, Russia:

L. Yu. Udoeva, Senior Researcher, e-mail:
E. N. Selivanov, Head of Laboratory of Pyrometallurgy of Non-Ferrous Metals
K. V. Pikulin, Junior Researcher


Low content of molybdenium in domestic ores and the remoteness of discovered deposits from the industrial centers of raw materials processing increases significantly the cost price and reduces the competitive ability of the products. To solve the problem, it is necessary to improve technologies and develop new ways of obtaining high-quality products that are in demand in science-intensive industries. The article presents the results of an alkaline pressure leaching study to intensify the process of purification of molybdenite concentrates and to obtain pure molybdenium disulfide from low-grade raw materials (40–45% Mo). The sample of concentrate from South Shameysk deposit showed the possibility to replace a multistage flotation beneficiation by alkali-xylite hydrothermal decomposition of minerals-related impurities contained in the molybdenite concentrate. On the basis of organo-alkaline pressure leaching, we offered the flowsheet for purification of the substandard molybdenite concentrate to pure molybdenium disulfide. The directional change in occurrence forms of impurities in the alkaline product reduces noticeably the number of stages and duration of the subsequent acid processing, the consumption of reagents and the volume of waste solutions containing environmentally hazardous components in comparison with the existing technology for MoS2 production. The sequence of transformations of silicon-containing and sulfide components at all stages of the flowsheet for purification of molybdenite concentrate was found out with the help of X-ray diffraction analysis, electron microscopy and electron probe microanalysis. The proposed method for obtaining pure molybdenium disulfide is less demanding for the quality of raw materials and applicable to low-grade molybdenite concentrates, which will allow reducing the number of operations and metal losses under an enrichment of poor molybdenium-containing ores.
This work was carried out within the State Task of the Institute of Metallurgy of the Ural Branch of the RAS (subject No. 0396-2015–0082).

keywords Molybdenite concentrate, xylite, molybdenium disulfide, alkaline pressure leaching, phase composition, microstructure, process flowsheet

1. Kharin E. I., Vatolin N. A., Khalezov B. D., Zelenin E. A., Evdokimova O. V. Development of environmentally friendly complex technology of processing of the molybdenium concentrate received at enrichment of ores of new Southern Shameysky deposit. Tsvetnaya metallurgiya. 2013. No. 3. pp. 34–38.
2. Hakobyan K. E., Sohn H. Y., Hakobyan A. K., Tarasov A. B., Bryukvin V. A. Complex and harmless vapor-pyrometallurgical technology for molybdenium sulfide concentrates. Tsvetnaya metallurgiya. 2013. No. 2. pp. 48–52.
3. Skorov V. A., Kuleshov V. A. Practice of obtaining of high-pure molybdenite. Tsvetnye metally. 1960. No. 3. pp. 1–4.
4. Kreyn O. E., Kobakhidze L. P. Comparative economic assessment of obtaining methods for molybdenium disulphide. Izvestiya vuzov. Tsvetnaya metallurgiya. 1959. No. 2. pp. 130–134.
5. Ovsepyan A. O., Ayrapetyan G. M., Minasyan S. A. Technology of obtaining of high-pure molybdenium disulphide powder. Izvestiya NAN RA i GIUA. Seriya tekhnicheskikh nauk. 2004. Vol. LVII, No. 2. pp. 256–259.
6. Pat. 102560103 CN. С 22 В 3/08. Method for purification production of molybdenium disulfide. Fan Jianju, Li Hui, Li Li ; publ. 2012.07.11.
7. Pat. 103667676 CN, С 22 В 1/00. Method for purifying molybdenium concentrate through micro-wave-acid leaching combined technologies. Wang Xianqin ; publ. 2014.03.26.
8. Anikeeva A. N., Zarubinskiy G. M., Danilov S. N. Xylite and its derivatives. Uspekhi khimii. 1976. Vol. XLV, No. 1. pp. 106–137.
9. Kuznetsov E. M., Bayborodov P. P. Investigation of metals complexing with multi-atom alcohols in alkaline environment by dissolubility. Multi-atom alcohols are the organic dissolvents of non-ferrous metals : collection of scientific proceedings of Sredazniprotsvetmet. 1971. No. 4. pp. 87–93.
10. Bayborodov P. P. Interaction of lead oxide with multi-atom alcohols. Zhurnal prikladnoy khimii. 1975. Vol. XLIII, No. 12. pp. 2690–2693.
11. Kurkchi U. M. About the mechanism of reaction of antimony oxide interaction with multiatom alcohols in water solutions of sodium oxide hydrate. Collection of scientific proceedings of Sredazniprotsvetmet. 1980. No. 24. pp. 158–167.
12. Kurkchi U. M. About the obtaining of pure antimony trioxide. Tsvetnye metally. 1979. No. 8. pp. 38–41.
13. Kurkchi U. M. Improvement of technology for obtaining of high-pure antimony. Byulleten. Tsvetnaya metallurgiya. 1982. No. 15. pp. 22, 23.
14. Abduraimov S., Ishankhodzhaev S., Akhmedov M. A. Processing of lead production dusts using the alkaline-water-xylite solution. Chemistry of rare and non-ferrous metals. Tashkent : FAN, 1975. pp. 109–114.
15. Zakharova T. N., Alipchenko E. S., Abishev D. N. Extraction of tungsten and molybdenium from refractory ores of weathering crust. Vestnik AN KazSSR. 1985. No. 2. pp. 33–38.
16. Abishev D. N., Zakharova T. N., Udoeva L. Yu. New methods of obtaining of molybdenium disulfide using semi-functional organic reagents. Obogashchenie Rud. 1995. No. 4/5. pp. 44–46.
17. Elokhin V. A., Gryaznov O. N. Molybdenium-ore and molybdeniumbearing formations of the Urals: scientific monograph. Ekaterinburg : UGGU, 2012. 356 p.
18. Shkodin V. G., Abishev D. N., Bekturganov N. S. Alkaline silica-removal of raw materials. Alma-Ata : Nauka, 1984. 200 p.
19. Nepokrytykh T. A., Kuznetsov S. I., Tyurin N. G., Fedyaev F. F. Behavior of pyrite in alkaline and aluminate solutions. Izvestiya vuzov. Tsvetnaya metallurgiya. 1974. No. 4. pp. 68–73.
20. Mekhdiev I. G., Medzhidov A. A., Ibraev Z. D., Fatullaeva P. A., Yalchin B. Redox reactions between metal nitrates and polyols with the formation of nanopowders. Zhurnal neorganicheskoy khimii. 2013. Vol. 58, No. 8. pp. 1029–1032.
21. S. Anderson, M. Bonno, N. Shardon, M. Mamun. Method of manufacturing of metallic composite powder. Patent RF, No. 2122923. Published: 10.12.1998.
22. Degtyareva L. N., Radkevich L. S., Khaynakova E. A., Khoronzhevskaya L. M. Copper powder obtaining method. Patent RF, No. 1668042. Published: 07.08.1991.
23. Dorda F. A., Dedov N. V. Method of obtaining of ultra-disperse copper powder. Patent RF, No. 2102190. Published: 20.01.1998.
24. Eremenko N. K., Simenyuk G. Yu., Obraztsova I. I. Obtaining of nano-sized powders of copper with regulated dispersity and investigation of their properties. Thesises of reports of the XIV International scientific and technical conference “Science-intense chemical technologies-2012”, Tula. Moscow, 2012. p. 297.
25. Udoeva L.Yu., Batalov A. V., Pechishcheva N. V., Ivashev A. S. Complexing of manganese (II) and iron (II) with multi-atom alcohols. Ekaterinburg : AKhU UrO RAN, 2014. pp. 39–43.
26. Watling H. R. Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate-chloride and sulfate nitrate process options. Hydrometallurgy. 2013. Vol. 140. pp. 163–180.
27. Udoeva L. Yu., Baltynova N. Z., Abishev D. N. Kinetic peculiarities of pyrite decomposition in the conditions of obtaining of pure molybdenium disulfide. Kompleksnoe ispolzovanie mineralnogo syrya. 1996. No. 3. pp. 94–96.
28. Habashi F. Nitric acid in hydrometallurgy of sulfides. Warrendale : TMSAIME, 1999. pp. 357–364.
29. TU 48-19-133–90. Molybdenium disulfide. Technical Requirements. 1990. 25 sheets.

Language of full-text russian
Full content Buy