Journals →  Tsvetnye Metally →  2017 →  #5 →  Back

ArticleName Functional characteristics of electrode materials based on porous silicon for micropower current sources
DOI 10.17580/tsm.2017.05.09
ArticleAuthor Yashtulov N. A., Ragutkin A. V., Smirnov S. S., Lebedeva M. V.

Moscow Technological University (Institute of Fine Chemical Technologies), Moscow, Russia:

N. A. Yashtulov, Professor of a Chair of Energy Technologies, Systems and Units, e-mail:
A. V. Ragutkin, Vice-rector on Innovation Development
M. V. Lebedeva, Assistant of a Chair of Physical Chemistry

Moscow Power Engineering Institute, Moscow, Russia:

S. S. Smirnov, Senior Researcher of a Chair of Chemistry and Electrochemical Power Industry


The problem of active materials production for micropower current sources construction has become particularly relevant owing to recent advances in nanotechnology and microelectronics. Nowadays, silicon is the basic material of nano- and microelectronics. Its structural modification can possess a unique set of properties, providing the undoubted technological advantages of silicon technology. The composites with platinum nanoparticles on porous silicon were developed for the creation of structural materials for electrochemical energy converters. Functional characteristics of the materials were studied by means of ex-situ and in-situ cyclic voltammetry. The obtained nano catalyst showed high activity in the hydrogen oxidation and oxygen reduction reactions, which are the basic for chemical current sources. Methods of synthesis of composite electrodes were developed on the basis of porous silicon with platinum catalysts, having the increased catalytic activity in the reaction of hydrogen oxidation as fuel. The maximal power density of the prototype of the fuel element is more than 80 mW/sm2 with the current density 200–250 mA/sm2 and decreased content of platinum catalyst (in comparison with the existing analogues).
This work was carried out with the financial support of the State Task of Russian Federation (project No. 13.3140.2017/ПЧ).

keywords Porous silicon, platinum nanoparticles, watt-voltage characteristics, current density, power density

1. Micro & Nano-Engineering of Fuel Cells. Ed. Leung D. Y. C., Xuan J. Boca Raton : CRC Press, 2015. 338 p.
2. Abramovich B. N., Veprikov A. A., Sychev Yu. A., Khomyakov K. A. Increasing the effectiveness of electro-technical transformation complexes for supplying of aluminium electrolysers. Tsvetnye Metally. 2016. No. 10. pp. 49–53.
3. Kobayashi M. A., Suzuki T., Hayase M. А miniature fuel cell with monolithically fabricated Si electrodes — Reduction of residual porous Si on catalyst layer. Journal of Power Sources. 2014. Vol. 267. pp. 622–628.
4. Yacou C., Ayral A., Giroir-Fendler A., Fontaine M. L., Julbe A. Hierarchical porous silica membranes with dispersed Pt nanoparticles. Microporous and Mesoporous Materials. 2009. Vol. 126, No. 3. pp. 222–227.
5. Yashtulov N. A., Zenchenko V. O., Kuleshov N. V., Flid V. R. Synthesis and catalytic activity of nanocomposites platinum/porous silicon. Izvestiya AN. Seriya khimicheskaya. 2016. Vol. 65, No. 10. pp. 2369–2374.
6. Borghei M., Scotti G., Kanninen P., Weckman T., Anoshkin I. V., Nasibulin A. G., Franssila S., Kauppinen E. I., Kallio T., Ruiz V. Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes. Energy. 2014. Vol. 65. pp. 612–620.
7. Porous silicon: From Formation to Application. Vol. 3: Microelectronics, Optoelectronics and Energy Technology Applications. Ed. G. Korotcenkov. Boca Raton : CRC Press, 2016. 430 p.
8. Yashtulov N. A., Zenchenko V. O., Lebedeva M. V., Samoylov V. M., Karimov O. Kh., Flid V. R. Synthesis and electrocatalytic activity of palladium nanoparticles on porous silicon. Izvestiya AN. Seriya khimicheskaya. 2016. Vol. 65, No. 1. pp. 133–138.
9. Yashtulov N. A., Patrikeev L. N., Zenchenko V. O., Smirnov S. E., Lebedeva M. V., Flid V. R. Formation and catalytic properties of materials based on porous silicon with platinum nanoparticles. Rossiyskie nanotekhnologii. 2015. Vol. 10, No. 11–12. pp. 91–96.
10. Munoz-Noval A., Fukami K., Koyama A., Gallach D., Hermida-Merino D., Portale G., Kitada A., Murase K., Abe T., Hayakawa S., Sakka T. Accelerated growth from amorphous clusters to metallic nanoparticles observed in electrochemical deposition of platinum within nanopores of porous silicon. Electrochemistry Communications. 2016. Vol. 71. pp. 9–12.
11. Yashtulov N. A. Electron deficient nanoclusters of platinum and palladium on porous silicon. Tonkie khimicheskie tekhnologii. 2011. Vol. 6, No. 3. pp. 87–90.
12. Adawyia J. H., Alwan M. A., Allaa A. J. Optimizing of porous silicon morphology for synthesis of silver nanoparticles. Microporous and Mesoporous Materials. 2016. Vol. 227. pp. 152–160.
13. Keshavarzi S., Mescheder U., Reineck H. Room temperature Si–Si direct bonding technique using velcro-like surfaces. Journal of microelectro mechanical systems. 2016. Vol. 75, No. 9. pp. 311–319.
14. Handbook of porous silicon. Ed. L. Canham. London : Springer, 2014. 1017 p.
15. Yashtulov N. A., Gavrin S. S., Bondarenko V. P., Kholostov K. I., Revina A. A., Flid V. R. Formation of nanocomposite platinum catalysts on porous silicon. Izvestiya AN. Seriya khimicheskaya. 2011. Vol. 60, No. 3. pp. 425–430.
16. Nechitaylov A. A., Astrova E. V. Methods of complex attestation of electrodes on the basis of porous silicon for fuel elements. Alternativnaya energetika i ekologiya. 2007. No. 2. pp. 66–71.
17. Maksimov Yu. M., Podlovchenko B. I., Gladysheva T. D., Kolyadko E. A. Structural and sorption properties of the systems Pt-polyaniline and Pd-polyaniline, obtained during the electrode potential cycling. Elektrokhimiya. 1999. Vol. 35, No. 11. pp. 1388–1394.
18. E. Guerrini, S. Trasatti. Recent developments in understanding factors of electrocatalysis. Elektrokhimiya. 2006. Vol. 42, No. 10. pp. 1131–1140.
19. Andersen S. M., Larsen M. J. Performance of the electrode based on silicon carbide supported platinum catalyst for proton exchange membrane fuel cells. Journal of Electroanalytical Chemistry. 2017. Vol. 791. pp. 175–184.
20. Kouassi S., Gautier G., Thery J., Desplobain S., Borella M., Ventura L., Laurent J. Y. Proton exchange membrane micro fuel cells on 3D porous silicon gas diffusion layers. Journal of Power Sources. 2012. Vol. 216. pp. 15–21.
21. Zabrodskiy A. G., Gurevich S. A., Kozhevin V. M., Astrova E. V., Nechitaylov A. A., Sreseli O. M., Terukov E. I., Kompan M. E. Micro- and nanotechnologies for portative fuel elements. Alternativnaya energetika i ekologiya. 2007. Vol. 46, No. 2. pp. 54–59.
22. Su H., Xu Q., Chong J., Li H., Sita C., Pasupathi S. Eliminating microporous layer from gas diffusion electrode for use in high temperature polymer electrolyte membrane fuel cell. Journal of Power Sources. 2017. Vol. 341. pp. 302–308.

Language of full-text russian
Full content Buy