Journals →  Tsvetnye Metally →  2017 →  #3 →  Back

ArticleName Influence of components relation on structure and properties of intermetallic alloys on the basis of Ti – Al – C
DOI 10.17580/tsm.2017.03.13
ArticleAuthor Teslina M. A., Vlasova N. M., Ershova T. B., Astapov I. A.

Institute of Materials Science of Khabarovsk Science Center of the Far Eastern Branch of Russian Academy of Sciences, Khabarovsk, Russia:

M. A. Teslina, Researcher, e-mail:
N. M. Vlasova, Researcher
T. B. Ershova, Head of Laboratory of Composite Materials
I. A. Astapov, Senior Researcher


Al – C system were investigated. Relation of components in mixtures for sample production was different. The composition of initial mixture corresponded to the relation of the components 7 Ti:2 Al:3 C (Ti – 80 % (wt.), Al – 12 % (wt.), C – 8 % (wt.)). The second mixture for sample preparation consisted of the initial mixture with aluminium excess (20 % (wt.)), which corresponded to Ti – 78 % (wt.), Al – 14 % (wt.), C – 8 % (wt.). The third composition consisted of the initial mixture with titanium and carbon excess (20 % (wt.)), which corresponded to Ti – 81 % (wt.), Al – 10 % (wt.), C – 9 % (wt.). Materials with nitrogen-containing or carbon-containing MAX-phase were obtained, depending on the relation of components in mixture and sintering temperature. During the sintering of the initial mixture corresponding composition to the temperature of 1300 oC, the material containing MAX-phase Ti2AlN was formed, while MAX-phase Ti3AlС2 was formed at the temperature of 1300 oC and higher. The second and third compositions, sintered at the temperature of 1300 oC and higher, formed a material, containing MAX-phases Ti2AlС and Ti3AlС2. At the sintering temperature to 1300 oC, low-carbon carbonitride TiC0.3N0.7 was formed. Increasing the sintering temperature to 1300 оC and higher formed a high-carbon carbonitride TiC0.7N0.3. Increasing the sintering temperature from 1300 to 1400 oC changed the relation Ti2AlC (Ti3AlC2) with secondary phases (TiC0.7N0.3 or TiC), which always are in the final product. Nature of change of microhardness of the investigated samples showed that carbonitride particles are the reinforcing phase in the material. The optimal conditions (1300 оC sintering temperature, 1–2 hours sintering duration), allow the obtaining of carbon-bearing MAX-phases Ti3AlС2 and Ti2AlС and highcarbon carbonitride TiC0.7N0.3 in material. Relation of components in mixture plays the most important role for Ti2AlС and Ti3AlС2 formation.

keywords Intermetallic alloys, МАХ-phase, composition, structure, properties, obtaining conditions, powder metallurgy, layer triple compounds

1. Barsoum M. W., Ali M., El-Raghy T. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. Metallurgical and Materials Transactions A. 2000. Vol. 31, No. 7. pp. 1857–1865.
2. Lin Z. J., Zhuo M. J., Li M. S., Wang J. Y., Zhou Y. C. Synthesis and microstructure of layered-ternary Ti2AlN ceramic. Scripta Materialia. 2007. Vol. 56. pp. 1115–1118.
3. Gui Bai, Sa Rafael, Jayaseelan D. D., Inam Fawad, Reece M. J., Lee W. E. Microstructural evolution during high-temperature oxidation of spark plasma sintered Ti2AlN ceramics. Acta Materialia. 2012. Vol. 60, No. 3. pp. 1079–1092.
4. Naguib M., Mashtalir O., Carle J., Presser V., Lu Jun, Hultman L., Gogotsi Y., Barsoum M. W. Two-dimensional transition metal carbides. Acsnano. 2012. Vol. 6, No. 2. pp. 1322–1331.
5. Joelsson T., Horling A., Birch J., Hultman L. Single-crystal Ti2AlN thin films. Applied Physics Letters. 2005. Vol. 86, No. 11. pp. 101–113.
6. Bystrov Yu. A., Vetrov N. Z., Lisenkov A. A. Plasmochemical synthesis of nitride compounds on the basis of aluminium in vacuum-arc charge plasma. Pisma v ZhTF. 2012. Vol. 38, No. 20. pp. 50–56.
7. Brodnikovskiy N. P., Pechkovskiy E. P., Firstov S. A. et al. Mechanical behavior of titanium-silicon carbide Ti3SiC2 depending on structural state and conditions of deformation. Metallofizicheskie noveyshie tekhnologii. 2003. Vol. 25, No. 9. pp. 1179–1200.
8. Li J. F., Pan W., Sato F., Watanabe R. Mechanical properties of polycrystalline Ti3SiC2 at ambient and elevated temperatures. Acta Materialia. 2001. Vol. 49. pp. 937–945.
9. Lis J., Pampuch R., Piekarczyk J., Stobierski L. New ceramics based on Ti3SiC2. Ceramics International. 1993. Vol. 19. pp. 219–234.
10. Gorban V. F., Demidik A. N., Ivanova I. I., Karpets M. V., Krylova N. A., Pechkovskiy E. P., Polushko A. P., Firstov S. A. Structural and Porosity Effects of Sintered Titanium Nanolaminates on Their Mechanical Properties at High Temperatures. Problemy prochnosti. 2006. No. 6. pp. 79–94.

11. State Standard GOST 6058–73. Aluminium powder. Introduced: 1975–01–01.
12. Beckert M., Klemm H. Handbuch der metallographischen Ätzverfahren. Moscow : Metallurgiya, 1988. 400 p.
13. Prikhna T., Cabioc’h T., Gawalek W., Ostash O., Litzkendorf D., Dub S., Loshak M., Sverdun V., Chartier P., Basyuk T., Moshchil V., Kozyrev A., Karpets M., Kovylaev V., Starostina A., Turkrvich D. Study of the thermal stability and mechanical characteristics of MAX phases of Ti – Al – C(N) system and their solid solutions. Advances in Science and Technology. 2014. Vol. 89. pp. 123–128.
14. Tzenov N. V., Barsoum M. W. Synthesis and characterization of Ti3AlC2. Journal of the American Ceramic Society. 2000. Vol. 83, No. 4. pp. 825–832.
15. Ghosh N. C., Harimkar S. P. Consolidation and synthesis of MAX phases by Spark Plasma Sintering (SPS): a review. Woodhead Publishing Limited. 2012. pp. 47–80.
16. Barsoum M. W., Brodkin D., El-Raghy T. Layered machinable ceramics for high temperature applications. Scripta Materialia. 1997. Vol. 36, No. 5. pp. 535–541.
17. Grinberg B. A., Ivanov M. A. Intermetallides Ni3Al, TiAl: microstructure, deformation behavior. Ekaterinburg : UrO RAN, 2002. 360 p.
18. Braic V., Balaceanu M., Tudor I., Popeseu A., Braic M., Pavelescu G., Zamfir R. Properties of titanium based hard coatings deposited by the cathodic arc method. Journal of Optoelectronics and Advanced Materials. 2002. Vol. 4, No. 1. pp. 115–120.
19. Li B., Zhang G., Zhang P., Liu G. Microstructure, mechanical and tribological properties of Ti(C, N)/a-C gradient composite films. Thin Solid Films. 2011. Vol. 519. pp. 6246–6251.

Language of full-text russian
Full content Buy