Journals →  Tsvetnye Metally →  2017 →  #3 →  Back

ArticleName Regularities of reagents effect on properties and floatability of copper minerals with sulphydrilic collectors. Part 1. Regularities of copper minerals oxidation in flotation conditions
DOI 10.17580/tsm.2017.03.02
ArticleAuthor Abramov A. A.

Moscow University of Science and Technology “MISiS”, Moscow, Russia:

A. A. Abramov, Professor of a Chair of Chemistry, e-mail:


Quantitative regularities of oxidation were determined for such 19 copper minerals as sulfides, selenides, tellurides, metallic copper and copper sulphursalts, containing arsenic, arsenic and iron, antimony, silver or bismuth in usual flotation conditions. According to the thermodynamic probability of oxidation, characterized by the potential value of mineral oxidation onset, the considered minerals are settled down in the following line: khalnaite > epigenite > chalcostibite > stromeyerite > chalcopyrite > valleriite > emplectite > enargite > covellite > wittichenite > bornite > telluride of bivalent copper > telluride of monovalent copper > chalcocite > klokmannite > tennantite > metallic copper > tetrahedrite > bertcelianite. Each following mineral in this line is protected from oxidation by previous one over the electrochemical mechanism. The established quantitative regularities of copper minerals oxidation (for 15 minerals for the first time) are necessary for creation and maintenance of optimal conditions in activation, deactivation and selective oxidation of minerals. They can be used under preparation of pulp for flotation, definition of optimal conditions for collectorless and usual flotation, optimal values of рН and oxidation-reduction potential of a pulp in selective flotation of minerals while electrochemical processing a pulp, application of reagents-oxidizers or reagents-reducers, conditioning pulps with various gases.

keywords Oxidation, Purbe diagrams, khalnaite, epigenite, chalcostibite, stromeyerite, chalcopyrite, valleriite, emplectite, enargite, covellite, wittichenite, bornite, telluride of bivalent copper, telluride of monovalent copper, chalcocite, klokmannite, tennantite, metallic copper, tetrahedrite, bertcelianite, reagents, flotation

1. Abramov A. A. Collection of works: Volume 8: Flotation. Sulfide minerals. Moscow : Publishing House of Moscow State Mining University “Gornaya kniga”, 2013. 704 p.
2. Mitrofanov S. I. Selective flotation. Second edition. Moscow : Nedra, 1967. 584 p.
3. Bocharov V. A., Ryskin M. Ya. Technology of conditioning and selective flotation of non-ferrous metal ores. Moscow : Nedra, 1993. 305 p.
4. Chen X., Seaman D., Peng Y., Bradshaw D. Importance of oxidation during regrinding of rougher flotation concentrates with high content of sulfides. Minerals Engineering. 2014. Vol. 66–68. pp. 165–172.
5. Alireza N. J., Rao H. K. A new insight into oxidation mechanisms of sulphfide minerals. XXVII IMPC, Flotation fundamentals. 2014. pp. 106–118.
6. Fardis N., Mehdi I., Ali Y. Application of optimal design for optimizing copper-molybdenum sulphides flotation. Physicochemical Problems of Mineral Processing. 2016. Vol. 52, No. 1. pp. 252–267.
7. Abramov A. A. Collection of works: Volume 7: Flotation. Collecting agents. Moscow : Publishing House of Moscow State Mining University “Gornaya kniga”, 2012. 607 p.
8. Abramov A. A., Avdohin V. M. Oxidation of sulphide minerals in benefication processes. Netherlands : Gordon and Breach Science Publishers, 1997. 321 p.
9. Brookins L. G. Eh-pH diagrams for geochemistry. Berlin, New York, London, Paris, Tokyo: Sрringer-Verlag, 1993.
10. Pourbaix M. Atlas of electrochemical equilibria. Oxford : Pergamon Press, 1966. 645 p.
11. Forssberg K. S. E., Subrahmanyam T. V. Grinding, pulp chemistry and particle flotability. Proceedings of the XVIII IMPC. Sydney, 1993. pp. 1–6.
12. Bogdanov O. S., Maksimov I. I., Podnek A. K., Yanis N. A. Theory and technology of ore flotation. Moscow : Nedra, 1990. 431 p.

Language of full-text russian
Full content Buy