Journals →  Tsvetnye Metally →  2016 →  #12 →  Back

ArticleName Structure, mechanical properties аnd deformation ability of ingots and flat products of the alloy Al - 6 % Cu - 2 % B
DOI 10.17580/tsm.2016.12.13
ArticleAuthor Samoshina M. E., Chervyakova K. Yu., Aleshchenko A. S., Mirzomustakimov M. M.

National University of Science and Technology “MISiS”, Moscow, Russia:

M. E. Samoshina, Senior Researcher of the Engineering Center “Casting Technologies and Materials”, Assistant Professorr of a Chair “Casting Technologies and Art Material Working”, e-mail:
K. Yu. Chervyakova, Engineer of the Engineering Center “Casting Technologies and Materials”, Post-Graduate Student of a Chair “Casting Technologies and Art Material Working”
A. S. Aleshchenko, Assistant Professor of a Chair of Plastic Metal Working
M. M. Mirzomustakimov, Master's Degree Student of a Chair “Casting Technologies and Art Material Working”


The ingots of Al – 6% Cu – 2% B alloy were prepared by induction melting. The uniform distribution of borides in aluminum matrix is shown. The presence of two borides AlB12, AlB2 and eutectic phase Al2Cu with aluminum solid solution was found. Homogenization annealing is at 540 оС for 6 and 12 hours with air cooling before deformation. The investigation shows high level of Al2Cu dissolution after 6 h of homogenization annealing, and non-dissolved Al2Cu particles have globular form. Deformation-thermal treatment consists of hot and cold deformation with intermediate softening annealings. Hot deformation temperature for optimization was changed. The cracking during hot deformation at 350 oС was estimated. The alloy Al – 6% Cu – 2% B has good deformability either at 400 or 450 oС. The sheet thickness 0.28–0.3 mm was obtained. The uniformly distributed borides particles less 20 μm in size form line aggregations in sheet microstructure. The heat treatment containing quenching and ageing for high mechanical properties was used. After quenching at 540 oС (holding time 1 h with water cooling) and ageing at 180 oС for 3 h, the ultimate tensile strength of sheets was 430±14 MPa with relative elongation 8±3%. The fractographic analysis shows ductile fracture of specimens.

keywords Boron-aluminum, radiation resistance, ingots, sheets, phase composition, microstructure, mechanical properties

1. Gladkovskiy S. V., Trunina T. A., Kokovikhin E. A., Smirnova S. V., Kamantsev I. S. Struktura i svoystva boralyuminievykh kompozitov, poluchennykh goryachey prokatkoy (Structure and properties of boron-aluminium composites received by hot rolling). Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk = Proceedings of the Samara Scientific Center of the Russian Academy of Sciences. 2011. Vol. 13, No. 1 (2). pp. 361–364.
2. Yazdani A., Salahinejad E. Evolution of reinforcement distribution in Al – B4C composites during accumulative roll bonding. Materials & Design. 2011. Vol. 32. pp. 3137–3142.
3. Yue XinYan, Wang JianJun, Yu ShangYong, Wang Wei, Ru HongQiang. Microstructure and mechanical properties of a three-layer B4C/Al – B4C/TiB2 – B4C composite. Materials & Design. 2013. Vol. 46. pp. 285–290.
4. Ibrahim M. F., Ammar H. R., Samuel A. M., Soliman M. S., Samuel F. H. On the impact toughness of Al – 15 vol.% B4C metal matrix composites. Composites Part B Engineering. 2015. Vol. 79. pp. 83–94.
5. M. D. Skibo, D. M. Schuster, R. S. Bruski. Apparatus for continuously preparing castable metal matrix composite material. Pat. 5531425 US. Alcan Aluminum Corporation. Fil.: 07.02.1994. Iss.: 02.07.1996.
6. Y. Sakaguchi, T. Saida, K. Murakami, K. Shibue, N. Tokizane, T. Takahashi. Aluminum composite material having neutron-absorbing ability. Pat. 6602314 US. Mitsubishi Heavy Industries, Ltd. Fil.: 27.07.2000. Iss.: 05.08.2003.
7. Samoshina M. E., Belov N. A., Alabin A. N., Chervyakova K. Yu. Struktura i mekhanicheskie svoystva listovogo prokata iz splava Al – 3% B, poluchennogo zhidkofaznym metodom (Structure and mechanical properties of alloy Al – 3% B flats, obtained by liquid-phase method). Tsvetnye Metally = Non-ferrous metals. 2015. No. 10. pp. 19–24. DOI: 10.17580/tsm.2015.10.03

8. Ömer Sava, Ramazan Kayikci. Production and wear properties of metal matrix composites reinforced with boride particles. Materials & Design. 2013. Vol. 51. pp. 641–647.
9. Baradeswaran A., Elaya A. Perumal, Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Composites Part B Engineering. 2013. Vol. 54. pp. 146–152.
10. Lai J., Zhang Z., Chen X.-G. The thermal stability of mechanical properties of Al – B4C composites alloyed with Sc and Zr at elevated temperatures. Materials Science and Engineering. 2012. No. 532. pp. 462–470.
11. Belov N. A., Samoshina M. E., Alabin A. N., Chervyakova K. Yu. Vliyanie medi i magniya na strukturu i fazovyy sostav slitkov boralyuminiya (Effect of copper and magnesium on the structure and the phase composition of boron/aluminum composite ingots). Metally = Russian metallurgy (Metally). 2016. No. 1. pp. 86–92.
12. GOST 11069–2001. Alyuminiy pervichnyy. Marki (State Standard 11069–2001. Primary aluminium. Grades). Introduced : 2003–01–01. (in Russian)
13. GOST 859–78. Med. Marki (State Standard 859–78. Copper. Grades). Introduced : 1979–01–01. (in Russian)
14. Kurbatkina E. I., Belov N. A., Alabin A. N., Sidun I. A. Osobennosti plavki i litya borsoderzhashchikh alyumomatrichnykh kompozitov na osnove splavov 6xxx serii (Peculiarities of melting and casting of boron-containing aluminummatrix composites based on 6xxx alloys). Tsvetnye Metally = Non-ferrous metals. 2015. No. 1. pp. 85–90.
15. Danilenko V. N., Mironov S. Yu., Belyakov A. N., Zhilyaev A. P. Primenenie EBSD analiza v fizicheskom materialovedenii (obzor) (Application of EBSD analysis in physical materials science (review)). Zavodskaya laboratoriya = Industrial laboratory. Materials diagnostics. 2012. Vol. 78, No. 2. pp. 28–46.
16. GOST 2999–75. Metally i splavy. Metod izmereniya tverdosti po Vikkersu (State Standard 2999–75. Metals and alloys. Vickers hardness teat by diamond pyramid). Introduced : 1976–07–01. (in Russian)
17. GOST 1497–84. Metally. Metody ispytaniy na rastyazhenie (State Standard 1497–84. Metals. Methods of tension test). Introduced : 1986–01–01. (in Russian)
18. GOST 11701–84. Metally. Metody ispytaniy na rastyazhenie tonkikh listov i lent (State Standard 11701–84. Metals. Methods of tensile testing of thin sheets and strips). Introduced: 1986–01–01. (in Russian)
19. Belov N. A. Fazovyy sostav promyshlennykh i perspektivnykh alyuminievykh splavov (Phase composition of industrial and prospective aluminium alloys). Moscow : MISiS, 2010. 511 p.
20. L. F. Mondolfo. Struktura i svoystva splavov (Aluminium Alloys : Structure and Properties). Trnslated from English. Moscow : Metallurgiya, 1979. 640 p.

Language of full-text russian
Full content Buy