Journals →  Tsvetnye Metally →  2016 →  #12 →  Back

ArticleName Investigation of influence of the conditions of growing from tellurium-based solution on morphology of epitaxial alloy (cadmium-mercury-tellurium) surface
DOI 10.17580/tsm.2016.12.09
ArticleAuthor Andrusov Yu. B., Belov A. G., Konovalov A. A., Smirnova N. A.

JSC “Giredmet”, Moscow, Russia:

Yu. B. Andrusov, Senior Researcher, e-mail:
A. G. Belov, Leading Researcher
A. A. Konovalov, Senior Researcher
N. A. Smirnova, Leading Researcher


This paper shows the results of investigations of the influence of conditions of growing by liquid-phase epitaxion on morphology of epitaxial layers CdxHg1–xTe (0.20 < х < 0.23) surface. Epitaxial layers ((10±5) μm thickness) were grown from tellurium-based solutions on bottom layer Cd0.96Zn0.04Te, placed over the liquid phase layer. This process was carried out in isothermal conditions from over-cooled liquid phase and in the conditions of preliminary dissolution of the surface bottom layer in over-heated liquid phase with following growth of epitaxial layer in the forced system cooling. Growing from over-cooled solution leads to formation of chaotic terrace microrelief with terrace height up to 800 nm on the surface of epitaxial layers. Using the preliminary dissolution of the surface bottom layer and the following cooling ratio  < 0.5 deg/min, terrace pacing becomes regular, and their height is decreased to several tens of nanometers. Dissolution of the surface bottom layer in the solution, overheat by 4 oC (even with high values) leads to the convective flows in liquid phase and disorder of the planarity of the bottom layer
surface, followed by the grown epitaxial layer. During the solution overheating <2 oC and α > 0.2 deg/min, there is no disorder of the planarity of the bottom layer surface and epitaxial layer. At the same time, during the  > 0.5 deg/min, the growth defects are on the epitaxial layer surface, which quantity is higher, when the “a” value is higher, and sizes may reach 1 mm in diameter with height up to 10 μm.

This work was carried out with the support of the Ministry of Education and Science within the agreement about the subsidiary on 21 October 2014 No. 14.576.21.0055 (unique identifier RFMEFI57614X0055).

keywords Liquid-phase epitaxion, cadmium, mercury, tellurium, epitaxial layer, morphology, dissolution, defect, surface, planarity

1. Higgins W. M., Nelson D. A., Roy R. G., Murosako R. P., Lancaster R. A., Tower J., Norton P. History of the “Detector Materials Engineering” Crystal Growth Process for Bulk Hg1–xCdxTe. Journal of Electronic Materials. 2013. Vol. 42, No. 11. pp. 3320–3330.
2. Rogalski A. Progress in focal plane array technologies. Progress in Quantum Electronics. 2012. Vol. 36. pp. 342–473.
3. Gravrand O., Destefanis G., Bisotto S., Baier N., Rothman J., Mollard L., Brellier D., Rubaldo L., Kerlain A., Destefanis V., Vuillermet M. Issues in HgCdTe research and expected progress in infrared detector fabrication. Journal of Electronic Materials. 2013. Vol. 42, No. 11. pp. 3349–3358.
4. Reddy M., Peterson J. M., Vang T., Franklin J. A., Visela M. F., Olsson K., Patten E. A., Radford W. A., Bangs J. W., Melkonian L., Smith E. P. G., Lofgreen D. D., Johnson S. M. Molecular beam epitaxy growth of HgCdTe on large-area Si and CdZnTe substrates. Journal of Electronic Materials. 2011. Vol. 40, No. 8. pp. 1706–1716.
5. Sheng F., Zhou C., Sun S., Yang J. Influences of Te-rich and Cd-rich precipitates of CdZnTe substrates on the surface defects of HgCdTe liquidphase epitaxy materials. Journal of Electronic Materials. 2014. Vol. 43, No. 5. pp. 1397–1402.
6. Billman C. A., Almeida L. A., Smith P., Arias J. M., Chen A., Lee D., Piquette E. C. The effects of microvoid defects on MWIR HgCdTe-based diodes. Journal of Electronic Materials. 2011. Vol. 40, No. 8. pp. 1693–1698.
7. Downs C., Vandervelde T. E. Progress in infrared photodetectors since 2000. Sensors. 2013. Vol. 13, No. 4. pp. 5054–5098.
8. Gravrand O., Destefanis G. Recent progress for HgCdTe quantum detection in France. Infrared Physics and Technology. 2013. Vol. 59. pp. 163–171.
9. Permikina E. V., Kashuba A. S., Lyalikov A. V., Korotaev E. D., Burlakov I. D. Issledovaniya geteroepitaksialnykh struktur HgCdTe metodami mikroskopii vysokogo razresheniya (High-resolution microscopy investigations of HgCdTe heteroepitaxial structures). Prikladnaya fizika = Applied Physics. 2012. No. 5. pp. 81–90.
10. Reddy M., Lofgreen D. D., Jones K. A., Peterson J. M., Radford W. A., Benson J. D., Johnson S. M. Cross-sectional study of macrodefects in MBE dual-band HgCdTe on CdZnTe. Journal of Electronic Materials. 2013. Vol. 42, No. 11. pp. 3114–3118.
11. Suh S., Kim J., Kim H. J., Song J. Control of hillock formation during MOVPE growth of HgCdTe by suppressing the pre-reaction of the Cd precursor with Hg. Journal of Crystal Growth. 2002. Vol. 236, No. 1–3. pp. 119–124.
12. Manchanda R., Nokhwal R., Sharma V., Sharma H., Chanchal, Sharma B. L., Sitharaman S. Liquid phase epitaxy growth process for mercury cadmium telluride. Crystal. 2016. Vol. 21, No. 1. pp. 33–35.
13. Radhakrishnan J. K., Sitharaman S., Gupta S. C. Liquid phase epitaxial growth of HgCdTe using a modified horizontal slider. Journal of Crystal Growth. 2003. Vol. 252, No. 1–3. pp. 79–86.
14. Radhakrishnan J. K., Sitharaman S., Gupta S. C. Surface morphology of Hg0.8Cd0.2Te epilayers grown by LPE using horizontal slider. Applied Surface Science. 2003. Vol. 207, No. 1–4. pp. 33–39.
15. Denisov I. A., Lakeenkov V. M., Mazhorova O. S., Popov Yu. P. Numerical study for liquid phase epitaxy of Hg1–xCdxTe solid solution. Journal of Crystal Growth. 2002. Vol. 245, No. 1–2. pp. 21–30.
16. Denisov I. A., Mazhorova O. S., Popov Yu. P., Smirnova N. A. Numerical modeling for convection in growth/dissolution of solid solution Hg1–xCdxTe by liquid-phase epitaxy. Journal of Crystal Growth. 2004. Vol. 269, No. 2–4. pp. 284–291.

Language of full-text russian
Full content Buy