Journals →  Tsvetnye Metally →  2016 →  #12 →  Back

ArticleName Growing of monocrystals Cd1–xZnxTe (х ~ 0,04) by vertical Bridgman crystallization oriented on seeding
DOI 10.17580/tsm.2016.12.08
ArticleAuthor Grishechkin M. B., Denisov I. A., Silina A. A., Shmatov N. I.

JSC “Giredmet”, Moscow, Russia:

M. B. Grishechkin, Researcher
I. A. Denisov, Head of Laboratory, e-mail:
A. A. Silina, Researcher
N. I. Shmatov, Leading Researcher


This paper investigates the seeding peculiarities during the crystals Cd1–xZnxTe (х ~ 0.04) growing by vertical oriented Bridgman crystallization in glasscarbonic crucibles with various shapes and sizes. There was carried out the numerical modelling of the conditions of heat- and mass-transfer on all stages of the growing process. On the seeding stage, the isotherm, matching with the solidus temperature х ~ 0.04 (1098 оС), is convex-concave in all cases. Increasing the part of crystallized phase changes the isotherm shape through the convex in melt to the concave in crystal for crucibles with diameters 50–51 mm and 50–68 mm. Considering the crucible with diameter 65–85 mm, the isotherm becomes the convex in melt with the temperature of 1098 оС and has this shape during the whole growing process. The numerical modelling data optimized the seeding conditions during the crystal Cd1–xZnxTe growing. Analysis of ZnTe distribution in grown crystals showed the correlation of the crystallization edge shape with the shape of isotherm of crystal solidus х ~ 0.04, obtained by the calculation conditions. Introduction of the additional stage of grinding of synthesized polycrystals and reloading in raster container does not lead to the decreasing of grown ingot purification. Structural, electrophysical and optical characteristics of obtained material meet the requirements to the material for the manufacturing of bottom layer for liquid phase epitaxy of photo-sensible layers Hg1–yCdyTe.
This work was carried out with the financial support of the Ministry of Education and Science within the Agreement about the subsidiary on 21 October 2014 No. 14.576.21.0055 (unique identifier RFMEFI57614X0055).

keywords Monocrystals, Bridgman vertical method, seeding, bottom layer, numerical modelling, heat and mass transfer, glass-carbonic crucible, cadmium, zinc, tellurium

1. Ivanov Yu. M. Vyrashchivanie monokristallov s ispolzovaniem effekta samozatravleniya (Growing of monocrystals using the self-seeding effect). Neorganicheskie materialy = Inorganic materials. 1998. Vol. 34, No. 9. pp. 1062–1068.
2. Rudolph P., Mühlberg M. Basic problem of vertical Bridgman growth of CdTe. Material Science and Engineering: B. 1993. Vol. 16, No. 1–3. pp. 8–16.
3. Zha M., Zappettini A., Calestani D., Marchini L., Zanotti L., Paorici C. Full encapsulated CdZnTe crystals by the vertical Bridgman method. Journal of Crystal Growth. 2008. Vol. 310. pp. 2072–2075.
4. Fiederle M., Fauler A., Zwerger A. Crystal growth and characterization of detector grade (Cd, Zn)Te crystals. IEEE Transactions On Nuclear Science. 2007. Vol. 54, No. 4. pp. 769–772.
5. Swain S. K., Cui Y., Datta A., Bhaladhare S., Rao M. R., Burger A., Lynn K. G. Bulk growth of uniform and near stoichiometric cadmium telluride. Journal of Crystal Growth. 2014. Vol. 389. pp. 134–138.
6. Su C.-H., Lehoczky S. L. Melt growth of high-resistivity CdZnTe crystals by controlling Cd over-pressures. Journal of Crystal Growth. 2011. Vol. 319. pp. 4–7.
7. Crocco J., Bensalah H., Zheng Q., Carcalén V., Diéguez E. Influence of SiC pedestal in the growth of 50 mm CZT by Vertical Gradient freeze method. Journal of Crystal Growth. 2012. Vol. 360. pp. 92–94.
8. Grishechkin M. B., Denisov I. A., Silina A. A., Smirnova N. A., Shmatov N. I. Optimizatsiya protsessa vyrashchivaniya monokristallov Cd1–xZnxTe (x ~ 0.04) metodom vertikalnoy napravlennoy kristallizatsii po Bridzhmenu (Optimization of the process of growth of monocrystals Cd1–xZnxTe (x ~ 0.04) by vertical Bridgman oriented crystallization). Trudy XXIV Mezhdunarodnoy konferentsii po fotoelektronike i priboram nochnogo videniya (Proceedings of the XXIV International conference on photoelectronics and noctovisors). Moscow, 2016. pp. 393–397.
9. Rudolph P. Fundamental studies on Bridgman growth of CdTe. Progress in Crystal Growth and Characterization of Materials. 1994. Vol. 29, No. 1–4. pp. 275–381.
10. Grishechkin M. B., Denisov I. A., Silina A. A., Smirnova N. A., Shmatov N. I. Issledovanie usloviy vyrashchivaniya monokristallov Cd1–xZnxTe (x ≤ 0.04) metodom vertikalnoy napravlennoy kristallizatsii (VNK) po Bridzhmenu (Investigation of growing conditions of Cd1–xZnxTe (x ≤ 0.04) single crystals by the vertical directed сrystallization (Bridgman) method). Prikladnaya fizika = Applied Physics. 2014. No. 5. pp. 72–75.
11. Yakovenko A. G., Silina A. A., Smirnova N. A., Denisov I. A. Issledovanie strukturnogo sovershenstva CdZnTe (211) metodom selektivnogo travleniya (Investigation of the structural perfectness CdZnTe (211) by selective etching). Tezis dokladov Konferentsii stran SNG po rostu kristallov (Thesis of reports of the Conference of CIS countries on the crystal growth). Kharkov, 2012. p. 163.
12. Kim K., Bolotnikov A. E., Camarda G. S. et al. Overcoming Zn segregation in CdZnTe with the temperature gradient annealing. Journal of Crystal Growth. 2016. Vol. 442. pp. 98–101. DOI: 10.1016/j.jcrysgro.2016.02.038
13. Belov A. G., Kanevskiy V. E., Pashkova N. V., Shlenskiy A. A. Opredelenie sostava kristallov tverdogo rastvora Cd1–xZnxTe po spektram propuskaniya v oblasti sobstvennykh perekhodov (Definition of the composition of crystals of solid solution Cd1–xZnxTe by the spectrums of transmission in the area of self transitions). Izvestiya vuzov. Materialy elektronnoy tekhniki = Materials of Electronics Engineering. 2008. No. 1. pp. 26–29.

Language of full-text russian
Full content Buy