Журналы →  Tsvetnye Metally →  2013 →  №12 →  Назад

HEAVY NON-FERROUS METALS
Название Cathodic reduction of lead in oxide-chloride melt LiCl – KCl – PbCl2 – PbO
Автор Pershin P. S., Khalimullina Yu. R., Arkhipov P. A., Zaykov Yu. P.
Информация об авторе

Institute of High-temperature Electrochemistry of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia:

P. S. Pershin, Junior Researcher, e-mail: paffka19@yandex.ru
Yu. R. Khalimullina, Researcher
P. A. Arkhipov, Senior Researcher
Yu. P. Zaykov, Director

Реферат

Electroreduction of ions is a cathodic process in lead refining technology. However, having certain conditions of electrolysis, cathodic process can involve not only lead, but also ions of other elements, which change the parameters of electrolysis and, as a result, worsen the quality of final product. The process of reduction of lead ions on molybdenum supporting plate, made of oxide-chloride melt LiCl – KCl – PbCl2 – PbO, depend on concentration of lead oxide in the temperature range of 723–823 K. This dependence was researched due to the method of stationary galvanostatic polarization curves. It is shown that addition of lead oxide to electrolyte reduces the limiting diffusion current density of lead ions reduction. According to polarization curves form and its depending on temperature and lead (II) oxide concentration, there can be suggested that cathodic process of lead ions reduction is controlled by diffusion. This is connected with formation of oxide-chloride complex Pb2OCl2 in electrolyte, which is conformed to literature data. There is shown that particles of Pb2O2+ have lower diffusion coefficients, than ions of Pb2+. Participation of such coarse particles in electrode process, leads to decreasing of limiting diffusion current density. This current density can be also under the influence of changing of concentration of electroactive particles. Further increasing of current density leads to smooth shift of electrode potential into negative area to isolation of alkaline metal and formation of lithium and lead alloy. Obtained data can be used for optimization of technology of lead refining in oxide-chloride melts.

Ключевые слова Oxide-chloride melt, lead oxide, cathodic polarization, limit diffusion current density
Библиографический список

1. Morachevskiy A. G., Vaysgant Z. I., Demidov A. I. Pererabotka vtorichnogo svintsovogo syrya (Processing of secondary lead raw materials). Saint Petersburg : Khimiya, 1993. 176 p.
2. Naryshkin I. I., Yurkinskiy V. P. Elektrokhimiya — Russian Journal of Electrochemistry. 1968. Vol. 4, Iss. 7. pp. 871–872.
3. Naryshkin I. I., Yurkinskiy V. P. Elektrokhimiya — Russian Journal of Electrochemistry. 1966. Vol. 2, Iss. 7. pp. 865–866.
4. Smidt E. Polarographie in Salzschmelzen–II., Oscillographische Wechselstrompolarographie in kalum chloridlitium chlorid Eutektikum. Electrochimica Acta. 1963. Vol. 8, Iss. 1–2. pp. 23–35.
5. Laitinen H. A., Gaur H. C. Chronopotentiometry in fused lithium chloride-potassium chloride. Analytical Chimica Acta. 1958. Vol. 18. pp. 1–13.
6. Delimarskiy Yu. K., Zarubitskiy O. G., Zolotrev V. L., Budnik V. G., Penkalo I. I. Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya — Russian Journal of Non-Ferrous Metals. 1972. No. 5. pp. 89–92.
7. Strenberg S., Visan T., Bonciocat N., Cotarta A. Electrode processes in the system: lead (liquid)/lithium chloride – potassium chloride – lead chloride. Revue Roumaine de Chimie. 1987. Vol. 32, Iss. 9–10. pp. 883–889.
8. Yurkinskiy V. P., Makarov D. V. Zhurnal prikladnoy khimii — Russian Journal of Applied Chemistry. 1994. Vol. 67, Iss. 8. pp. 1283–1286.
9. Hills G. I., Oxley I. E., Turner D. W. Silicates Industriels. 1961. Vol. 26. p. 559.
10. Galus Z. Teoreticheskie osnovy elektrokhimicheskogo analiza (Theoretic basis of electrochemical analysis). Moscow : Mir, 1974. 552 p.
11. Zhang Mi-lin, Chen Li-jun, Han Wei, Yan Yong-de, Cao Peng. Electrochemical behavior of Pb (II) in LiCl – KCl – MgCl2 – PbCl2 melts on Mo electrode. Transactions of Non-ferrous Metals Society of China. 2012. No. 22. pp. 711–716.
12. Haarberg G. M., Owe L. E., Qin B., Wang J., Tunold R. Electrodeposition of Lead from Chloride Melts. ECS Transactions. 2012. Vol. 50, No. 11. pp. 215–219.
13. Pershin P. S., Kataev A. A., Shurov N. I., Arkhipov P. A., Zaykov Yu. P. Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya — Russian Journal of Non-Ferrous Metals. 2013. No. 2. pp. 3–8.
14. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem : spravochnik : v trekh tomakh (Condition diagrams of double the general editorship of N. P. Lyakishev. Moscow : Mashinostroenie, 2001. Vol. 3, Book. 1. 872 p.
15. Delimarskiy Yu. K., Zarubitskiy O. G. Elektroliticheskoe rafinirovanie tyazhelykh metallov v ionnykh rasplavakh (Electrolytic refining of heavy metals in ionic melts). Moscow : Metallurgiya, 1975. 248 p.
16. Pershin P. S., Batukhtin V. P., Shurov N. I., Arkhipov P. A., and Zaikov Yu. P. Thermodynamic Properties of Dilute Solutions of Lead (II) Oxide in an Equimolar Mixture of KCl – PbCl2. Journal of Chemical Engineering Data. 2012. Vol. 57. pp. 2811–2816.
17. Renaud M., Poidatz E., Chaix J. E. Contribution à l’étude des mélanges liquides PbCl2 – PbO. Canadian Journal of Chemistry. 1970. Vol. 48. pp. 2061–2064.

Language of full-text русский
Полный текст статьи Получить
Назад